A Comparative Study on Tissue Classification of Brain MR Images Using DIPY, SPM, and FSL Frameworks

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 90

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJMP-21-2_002

تاریخ نمایه سازی: 6 خرداد 1403

چکیده مقاله:

Introduction: Complexity metrics have been suggested to characterize treatment plans based on machine parameters such as multileaf collimator (MLC) position. Several complexity metrics have been proposed and related to the Intensity-modulated radiation therapy (IMRT) quality assurance results. This study aims to evaluate aperture-based complexity metrics on MLC openings used in clinicaland establish a correlation between plan complexity and the gamma passing rate (GPR) for the IMRT plans.Material and Methods: We implemented the aperture-based complexity metric on MLC openings of the IMRT treatment plan for breast  and central nervous system (CNS) cases . The modulation complexity score (MCS), the edge area metric (EAM), the converted area metric (CAM), the circumference/area (CPA), and the ratio monitor unit MU/Gy are evaluated in this study. The complexity score was calculated using Matlab. The MatriXX Evolution was used for dose verification. The dose distribution was  analyzed using the OmniPro-I'mRT program  and the gamma index was assessed using two criteria: ۳%/۳ mm and ۳%/۲ mm. The correlation between the calculated complexity score and the GPR  is analyzed using SPSS.Results: The complexity score calculated by MCS, EAM, CAM, CPA, and MU/Gy shows breast plan is more complex than the CNS plan. The results of the correlation test of the complexity metric and GPR show that only the EAM metric shows a good correlation with GPR for both cases.Conclusion: EAM strongly correlates with the gamma pass rate. The MCS, CAM, CPA, and MU/Gy have a weak correlation with the GPR.

نویسندگان

Iman Azinkhah

Fintech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran Medical physics department, Faculty of medicine, Iran university of medical sciences, Tehran, Iran

Mahdi Sadeghi

Fintech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran Medical physics department, Faculty of medicine, Iran university of medical sciences, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Miller KD, Ostrom QT, Kruchko C, Patil N, Tihan T, ...
  • Lin D, Wang M, Chen Y, Gong J, Chen L, ...
  • Segmentation of Magnetic Resonance Brain Imaging Based on Graph Theory [مقاله ژورنالی]
  • Despotović I, Goossens B, Philips W. MRI segmentation of the ...
  • Duda RO. PE hart and DG Stork, pattern classification. Address: ...
  • Warfield SK, Kaus M, Jolesz FA, Kikinis R. Adaptive, template ...
  • Cocosco CA, Zijdenbos AP, Evans AC. A fully automatic and ...
  • Wells WM, Grimson WE, Kikinis R, Jolesz FA. Adaptive segmentation ...
  • Ashburner J, Friston KJ. Unified segmentation. neuroimage. ۲۰۰۵ Jul ۱;۲۶(۳):۸۳۹-۵۱. ...
  • Zhang Y, Brady M, Smith S. Segmentation of brain MR ...
  • Garyfallidis E, Brett M, Amirbekian B, Rokem A, Van Der ...
  • Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. ...
  • Collins CM, Liu W, Schreiber W, Yang QX, Smith MB. ...
  • Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for ...
  • Shattuck DW, Leahy RM. BrainSuite: an automated cortical surface identification ...
  • Shattuck DW, Sandor-Leahy SR, Schaper KA, Rottenberg DA, Leahy RM. ...
  • Theodoridis S. Machine learning. Chapter ۷—Classification: a tour of the ...
  • Li SZ. Markov random field modeling in image analysis. Springer ...
  • Pham DL, Xu C, Prince JL. Current methods in medical ...
  • Hunter JD. Matplotlib: A ۲D graphics environment. Comput Sci Eng. ...
  • Harris CR, Millman KJ, van der Walt SJ, et al. ...
  • Zou KH, Warfield SK, Bharatha A, Tempany CM, Kaus MR, ...
  • Yao AD, Cheng DL, Pan I, Kitamura F. Deep learning ...
  • Fleiss JL, Levin B, Paik MC (۲۰۰۳) The measurement of ...
  • Crum WR, Camara O, Hill DL. Generalized overlap measures for ...
  • DeCarli C, Maisog J, Murphy DG, Teichberg D, Rapoport SI, ...
  • Gilmore RL, Childress MD, Leonard C, Quisling R, Roper S, ...
  • Wadhwa A, Bhardwaj A, Verma VS. A review on brain ...
  • Dubey RB, Hanmandlu M, Gupta SK, Gupta SK. The brain ...
  • Evaluation and Comparison of Automatic Brain Segmentation Methods Based On the Gold Standard Method [مقاله ژورنالی]
  • نمایش کامل مراجع