Evaluation and Comparison of Automatic Brain Segmentation Methods Based On the Gold Standard Method
محل انتشار: مجله فیزیک پزشکی ایران، دوره: 20، شماره: 4
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 142
فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJMP-20-4_007
تاریخ نمایه سازی: 24 مهر 1402
چکیده مقاله:
Introduction: Accurate segmentation of brain tissue in magnetic resonance imaging (MRI) is an important step in the analysis of brain images. There are automated methods used to segmentation the brain and minimize the disadvantages of manual segmentation, including time consuming and misinterpretations. These procedures usually involve a combination of skull removal, bias field correction, and segmentation. Therefore, segmented tissue quality assessment segmentation of gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) is required for the analysis of neuroimages. Material and Methods: This paper presents the performance evaluation of three automatic methods brain segmentation, fluid and white matter suppression [FSL, Freesurfer (FreeSurfer is an open source package for the analysis and visualization of structural, functional, and diffusion neuroimaging data from cross-sectional and longitudinal studies) and SPM۱۲ (Statistical Parametric Mapping)]. Segmentation with SPM۱۲ was performed on three tissue probability maps: i) threshold ۰.۵, ii) threshold ۰.۷ and iii) threshold ۰.۹. In order to compare and evaluate the automatic methods, the reference standard method, i.e., manual segmentation, was performed by three radiologists. Results: Comparison of GM, WM and CSF segmentation in MR images was performed using similarities between manual and automatic segmentation. The similarity between the segmented tissues was calculated using diagnostic criteria. Conclusion: Several studies have examined the classification of GM, WM, and CSF using software packages. In these studies, different results have been obtained depending on the type of method and images used and the type of segmented tissues. In this study, the evaluation of the segmentation of these packages with reference standard method is performed. The results can help users in selecting an appropriate segmentation tool for neuroimages analysis.
کلیدواژه ها:
نویسندگان
Seyed Amir Zamanpour
Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
Zohreh Ganji
Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
Bahareh Bigham
Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
Fariba Zemorshidi
Department of Neurology, Ghaem Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
Hoda Zare
Mashhad University of Medical Sciences
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :