Enhancing Turbulence Modeling in RANS Simulations for Film Cooling Applications Using Machine Learning Techniques

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 148

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ITMECONF01_004

تاریخ نمایه سازی: 6 خرداد 1403

چکیده مقاله:

The research explores the incorporation of machine learning into Reynolds-Averaged Navier-Stokes (RANS) simulations. Acknowledging the constraints of conventional turbulence models, the study seeks to enhance predictions by utilizing information from high-fidelity data obtained from Large Eddy Simulation (LES) simulations. Methods such as correlation analysis are utilized to select crucial input features for training the model, with a focus on improving both accuracy and computational efficiency. Assessment of the refined model against standard RANS simulations and established high-fidelity data showcases notable enhancements in forecasting turbulent heat fluxes and temperature distributions.

نویسندگان

Ali.M Qaragoez

Sharif University of Technology

Karim Mazaheri

Sharif University of Technology

Christopher D.Ellis

University of Nottingham