Application of combined mathematical modeling/optimization methods coupled pitch controller in wind turbine using hybrid MLP neural network and firefly algorithm

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 92

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JCARME-13-2_010

تاریخ نمایه سازی: 26 فروردین 1403

چکیده مقاله:

A common method utilized in wind turbines is pitch angle control whereby via varying the angle of wind turbine blades around their own axis, power generated at high speeds of wind is held around maximum amount and is kept away from the severe mechanical stress on wind turbine. In current study, in order to control pitch angle, a control method based on using PI controller is suggested. Therefore, gains of the PI controller are regulated through combining the Firefly evolutionary algorithm and MLP neural network in such a way that the controller at its output sends a suitable controlling signal to the pitch actuator to set the pitch angle and so by varying the blades pitch angle suitably at high speeds of wind, the produced generator power remains around its nominal value. A wind turbine ۵MW made by NREL (National Renewable Energy Laboratory) has been utilized based on FAST software code to simulate and analyze the results. The simulation results show that proposed method has a good performance.

کلیدواژه ها:

Wind turbine ، Pitch control ، Firefly Algorithm (FA) ، Multi-layer perceptron (MLP) neural network

نویسندگان

Ehsanolah Assareh

Mechanical Engineering department,azad university,Dezful,Iran

Iman Poultangari

Electrical Engineering Department,azad university,Dezful,Iran

Afshin Ghanbarzadeh

Mechanical Engineering Department,shahid chamran university,ahvaz,iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • A.S. Yilmas and Z. Ozer, “Pitch angle control in wind ...
  • Y. Oguz and I. Guney, “Adaptive neuro-fuzzy inference system to ...
  • L. Zhang, E. Chunliang, H. Li and H. Xu, “A ...
  • X. Yao, C. Guo, Z. Xing, Y. Li, S. Liu ...
  • X. Yao, L. Guan, Q. Guo and X. Ma, “RBF ...
  • X. Yao, X. Su and L. Tian, “Pitch angle control ...
  • X. Yao, S. liu, G. Shan, Z. Xing, C. Guo ...
  • F. Gao, D. Xu and Y. Lv, “Pitch control for ...
  • M.Q. Duong, F. Grimaccia, S. Leva, M. Mussetta and E. ...
  • S.A. Taher, M. Farshadnia and M.R. Mozdianfard, “Optimal gain scheduling ...
  • B. Chen, P.C. Matthews and P.J. Tavner, “Wind turbine pitch ...
  • A. Musyafa, A. Harika, I.M.Y. Negara and I. Robandi, “Pitch ...
  • J. Jonkman, S. Butterfield, W. Musial and G. Scott, “ ...
  • F. Iof, A.D. Hansen, P. Sorensen and F. Blaabjerg, “Wind ...
  • B. Boukhezzar, H. Siguerdidjane, “Nonlinear control of a variable wind ...
  • D.T. Pham and X. Liu, “Neural Networks for Identification”, Prediction ...
  • L.F.F. Miguel, R.H. Lopez and L.F.F. Miguel, “Multimodal size, shape, ...
  • J.M. Jonkman and M.L. Buhl, “FAST user’s guide”, NREL/EL-۵۰۰-۲۹۷۹۸, Golden, ...
  • P. Sorensen, A.D. Hansen and P.A.C. Rosas, “Wind models for ...
  • E. Mjabber, A. Hajjaji and A. khamlichi , “Analysis of ...
  • L. Zhongwei, C. Zhenyu, W. Qiuwei, Y. Shuo and M. ...
  • نمایش کامل مراجع