Efficient NetB۳ for Enhanced Lung Cancer Detection: Histopathological Image Study with Augmentation

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 103

فایل این مقاله در 20 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JITM-16-1_006

تاریخ نمایه سازی: 28 اسفند 1402

چکیده مقاله:

Cancer is an abnormal cell growth that occurs uncontrollably within the human body and has the potential to spread to other organs. One of the primary causes of mortality and morbidity for people is cancer, particularly lung cancer. Lung cancer is one of the non-communicable diseases (NCDs), causing ۷۱% of all deaths globally, and is the second most common cancer diagnosed worldwide. The effectiveness of treatment and the survival rate of cancer patients can be significantly increased by early and exact cancer detection. An important factor in specifying the type of cancer is the histopathological diagnosis. In this study, we present a Simple Convolutional Neural Network (CNN) and EfficientNetB۳ architecture that is both straightforward and efficient for accurately classifying lung cancer from medical images. EfficientnetB۳ emerged as the best-performing classifier, acquiring a trustworthy level of precision, recall, and F۱ score, with a remarkable accuracy of ۱۰۰%, and superior performance demonstrates EfficientnetB۳’s better capacity for an accurate lung cancer detection system. Nonetheless, the accuracy ratings of ۸۵% obtained by Simple CNN also demonstrated useful categorization. CNN models had significantly lower accuracy scores than the EfficientnetB۳ model, but these determinations indicate how acceptable the classifiers are for lung cancer detection. The novelty of our research is that less work is done on histopathological images. However, the accuracy of the previous work is not very high. In this research, our model outperformed the previous result. The results are advantageous for developing systems that effectively detect lung cancer and provide crucial information about the classifier’s efficiency.

کلیدواژه ها:

نویسندگان

Devi

Department of CSE Annamacharya Institute of Technology and Sciences, Tirupati, India.

Ashok

Department of Information Science and Engineering, BMS Institute of Technology and Management, Bengaluru, Karnataka.

Gowda

Department of Machine Learning (AI-ML) BMS College of Engineering, Bangalore, India.

Sumalatha

Department of Database Systems, School of Computer Science and Engineering, Vellore Institute of Technology, Vellore - ۶۳۲۰۱۴, Tamilnadu, India.

Kadiravan

Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India.

Painam

Department of Electronics and Communication Engineering, Kallam Haranadhareddy Institute of Technology (Autonomous), NH-۱۶, Chowdavaram, Guntur, Andhra Pradesh, India.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Ahmed, S. T. (۲۰۲۲). ۶G enabled federated learning for secure ...
  • Alakwaa, W. a. (۲۰۱۷). Lung cancer detection and classification with ...
  • AlZubaidi, A. K. (۲۰۱۷). Computer aided diagnosis in digital pathology ...
  • Bhaktavastalam, P. a. (۲۰۱۶). Lung cancer disease analyzes using pso ...
  • Bhattacharjee, A. a. (۲۰۲۲). A hybrid approach for lung cancer ...
  • Bhuvaneswari, P. a. (۲۰۱۵). Detection of cancer in lung with ...
  • Bonavita, I. a.-P. (۲۰۲۰). Integration of convolutional neural networks for ...
  • Borkowski, A. A. (۲۰۱۹). Lung and colon cancer histopathological image ...
  • Borkowski, A. A. (۲۰۱۹). Lung and colon cancer histopathological image ...
  • de la Rosa, J. J.-P.-S.-M. (۲۰۱۳). Higher-order statistics: Discussion and ...
  • Dimililer, K. a. (۲۰۱۷). Tumor detection on CT lung images ...
  • Dritsas, E. a. (۲۰۲۲). Lung cancer risk prediction with machine ...
  • Hatuwal, B. K. (۲۰۲۰). Lung cancer detection using convolutional neural ...
  • Hatuwal, B. K. (۲۰۲۰). Lung cancer detection using convolutional neural ...
  • Kalaivani, N. a. (۲۰۲۰). Deep learning based lung cancer detection ...
  • Krishnaiah, V. a. (۲۰۱۳). Diagnosis of lung cancer prediction system ...
  • Kumar, A. a. (۲۰۲۳). Augmented Intelligence enabled Deep Neural Networking ...
  • Lakshmanaprabu, S. a. (۲۰۱۹). Optimal deep learning model for classification ...
  • Liu, S. a. (۲۰۱۷). Pulmonary nodule classification in lung cancer ...
  • Makaju, S. a. (۲۰۱۸). Lung cancer detection using CT scan ...
  • Mangal, S. a. (۲۰۲۰). Convolution neural networks for diagnosing colon ...
  • Manju, B. a. (۲۰۲۱). Efficient multi-level lung cancer prediction model ...
  • Mohalder, R. D. (۲۰۲۲). Lung Cancer Detection from Histopathological Images ...
  • Nasrullah, N. a. (۲۰۱۹). Automated lung nodule detection and classification ...
  • Prisciandaro, E. a. (۲۰۲۳). Artificial Neural Networks in Lung Cancer ...
  • Rong, Z. a. (۲۰۲۱). Diagnostic classification of lung cancer using ...
  • Roy, S. a. (۲۰۲۱). Comparative Study of Machine Learning Algorithms ...
  • Sang, J. a. (۲۰۱۹). Automated detection and classification for early ...
  • Shandilya, S. a. (۲۰۲۲). Analysis of lung cancer by using ...
  • Singh, G. A. (۲۰۱۹). Performance analysis of various machine learning-based ...
  • Sun, W. a. (۲۰۱۶). Computer aided lung cancer diagnosis with ...
  • Tan, M. a. (۲۰۱۹). Efficientnet: Rethinking model scaling for convolutional ...
  • Viale, P. H. (۲۰۲۰). The American Cancer Society’s facts \& ...
  • Wang, X. a.-A. (۲۰۲۲). Weakly supervised learning for whole slide ...
  • نمایش کامل مراجع