Chronic Kidney Disease Risk Prediction Using Machine Learning Techniques

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 90

فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JITM-16-1_007

تاریخ نمایه سازی: 28 اسفند 1402

چکیده مقاله:

In healthcare, a diagnosis is reached after a thorough physical assessment and analysis of the patient's medicinal history, as well as the utilization of appropriate diagnostic tests and procedures. ۱.۷ million People worldwide lose their lives every year due to complications from chronic kidney disease (CKD). Despite the availability of other diagnostic approaches, this investigation relies on machine learning because of its superior accuracy. Patients with chronic kidney disease (CKD) who experience health complications like high blood pressure, anemia, mineral-bone disorder, poor nutrition, acid abnormalities, and neurological-complications may benefit from timely and exact recognition of the disease's levels so that they can begin treatment with the most effective medications as soon as possible. Several works have been investigated on the early recognition of CKD utilizing machine-learning (ML) strategies. The accuracy of stage anticipations was not their primary concern. Both binary and multiclass classification methods have been used for stage anticipation in this investigation. Random-Forest (RF), Support-Vector-Machine (SVM), and Decision-Tree (DT) are the prediction models employed. Feature-selection has been carried out through scrutiny of variation and recursive feature elimination utilizing cross-validation (CV). ۱۰-flod CV was utilized to assess the models. Experiments showed that RF utilizing recursive feature removal with CV outperformed SVM and DT.

کلیدواژه ها:

نویسندگان

D

Computer Science and Engineering, Vasavi College of Engineering, Hyderabad, Telangana, India.

K

School of Computing and Information Technology, REVA University, Bangalore (North), Karnataka, India.

Prasad

Computing Science and Engineering, Institute of Aeronautical Engineering, Hyderabad, Telangana, India.

N

Computer Science and Engineering, Panimalar Engineering College, Chennai, Tamil Nadu, India.

Kiran

Computer Science and Engineering MLR Institute of Technology, Dundigal, Hyderabad, Telangana, India.

N

School of Computing Science and Engineering, Galgotias University, Greater Noida, Uttar Pradesh, India.

Shaker Reddy

School of Computing Science and Artificial Intelligence, SR University, Warangal-۵۰۶۳۷۱, Telangana, India.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Ahmed, T. I., Bhola, J., Shabaz, M., Singla, J., Rakhra, ...
  • Ashreetha, B., Devi, M. R., Kumar, U. P., Mani, M. ...
  • Aswathy, R. H., Suresh, P., Sikkandar, M. Y., Abdel-Khalek, S., ...
  • Barua, N. (۲۰۲۰). Computational Study on Interfacial Properties of Boron Nitride ...
  • Baskar, S., Nandhini, I., Prasad, M. L., Katale, T., Sharma, ...
  • Colli, V. A., González-Rocha, A., Canales, D., Hernández-Alcáraz, C., Pedroza, ...
  • Deivasigamani, S., Rani, A. J. M., Natchadalingam, R., Vijayakarthik, P., ...
  • Deo, R., Dubin, R. F., Ren, Y., Murthy, A. C., ...
  • Ebiaredoh-Mienye, S. A., Swart, T. G., Esenogho, E., & Mienye, ...
  • Hui, M., Ma, J., Yang, H., Gao, B., Wang, F., ...
  • Kumar, A., Satheesha, T. Y., Salvador, B. B. L., Mithileysh, ...
  • Kumar, G. R., Reddy, R. V., Jayarathna, M., Pughazendi, N., ...
  • Lambert, J. R., & Perumal, E. (۲۰۲۲). Oppositional firefly optimization ...
  • Latha, S. B., Dastagiraiah, C., Kiran, A., Asif, S., Elangovan, ...
  • Lee, C. L., Liu, W. J., & Tsai, S. F. ...
  • LK, S. S., Ahmed, S. T., Anitha, K., & Pushpa, ...
  • Major, R. W., Cockwell, P., Nitsch, D., & Tangri, N. ...
  • Mamatha, B., Rashmi, D., Tiwari, K. S., Sikrant, P. A., ...
  • Matsushita, K., Kaptoge, S., Hageman, S. H., Sang, Y., Ballew, ...
  • Mondol, C., Shamrat, F. J. M., Hasan, M. R., Alam, ...
  • Muthappa, K. A., Nisha, A. S. A., Shastri, R., Avasthi, ...
  • Raj, A., Tollens, F., Caroli, A., Nörenberg, D., & Zöllner, ...
  • Rao, K. R., Prasad, M. L., Kumar, G. R., Natchadalingam, ...
  • Saha, I., Gourisaria, M. K. & Harshvardhan, G. M. (۲۰۲۲). ...
  • Sampath, S., Parameswari, R., Prasad, M. L., Kumar, D. A., ...
  • Sharma, R., Shrivastava, S., Singh, S. K., Kumar, A., Singh, ...
  • Sucharitha, Y., Reddy, P. C. S. & Chitti, T. N. ...
  • Sucharitha, Y., Reddy, P. C. S., & Suryanarayana, G. (۲۰۲۳). ...
  • Suneel, S., Balaram, A., Amina Begum, M., Umapathy, K., Reddy, ...
  • Teju, V., Sowmya, K. V., Yuvanika, C., Saikumar, K., & ...
  • Wang, H., Bowe, B., Cui, Z., Yang, H., Swamidass, S. ...
  • نمایش کامل مراجع