Application of machine learning to predict daylight glare probability
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 121
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJNAA-15-3_019
تاریخ نمایه سازی: 17 اسفند 1402
چکیده مقاله:
Daylight Glare Probability (DGP), founded on the latest glare metric, is the main challenge related to daylight glare inside buildings. Studies showed that the DGP depends on several factors, such as vertical illuminance values at the human eye factor, which is an essential parameter. In this study, we implement machine learning techniques to estimate and predict the DGP classifications, which are imperceptible, perceptible, disturbing, and intolerable based on the various influenced factors. A series of machine learning simulations have been conducted to investigate how those factors can be influenced by the degree of glare and classifications. In this research, different machine learning algorithms such as Artificial Neural Networks (multi-layer perceptron), K-Nearest Neighbors (KNN), Support Vector Machines (SVM), and Random Forest (RF) were employed to determine or predict the DGP classifications accurately. Results showed that the RF is the most effective method to classify the DGP and can predict with up to ۹۹ % accuracy. Furthermore, the results displayed that vertical illuminance at eye level (lux), Ev, compared with other factors, has the largest influence on the DGP classifications. Consequently, machine learning is a powerful, promising, and viable option to implement in building constructions to optimize energy consumption, a global issue in the current century.
کلیدواژه ها:
Daylight Glare Probability (DGP) ، vertical illuminance at eye level (lux) ، Ev ، machine learning ، Artificial Neural Network ، Building constructions
نویسندگان
Seyedeh Tabassom Beykaei
Department of Architecture, Sari Branch, Islamic Azad University, Sari, Iran
Fatemeh Mozaffari Ghadikolaei
Department of Architecture, Sari Branch, Islamic Azad University, Sari, Iran
Abdollah Ebrahimi
Department of Architecture , Sari Branch, Islamic Azad University, Sari, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :