Application of machine learning to predict daylight glare probability

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 114

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAA-15-3_019

تاریخ نمایه سازی: 17 اسفند 1402

چکیده مقاله:

Daylight Glare Probability (DGP), founded on the latest glare metric, is the main challenge related to daylight glare inside buildings. Studies showed that the DGP depends on several factors, such as vertical illuminance values at the human eye factor, which is an essential parameter. In this study, we implement machine learning techniques to estimate and predict the DGP classifications, which are imperceptible, perceptible, disturbing, and intolerable based on the various influenced factors. A series of machine learning simulations have been conducted to investigate how those factors can be influenced by the degree of glare and classifications. In this research, different machine learning algorithms such as Artificial Neural Networks (multi-layer perceptron), K-Nearest Neighbors (KNN), Support Vector Machines (SVM), and Random Forest (RF) were employed to determine or predict the DGP classifications accurately. Results showed that the RF is the most effective method to classify the DGP and can predict with up to ۹۹ % accuracy. Furthermore, the results displayed that vertical illuminance at eye level (lux), Ev, compared with other factors, has the largest influence on the DGP classifications. Consequently, machine learning is a powerful, promising, and viable option to implement in building constructions to optimize energy consumption, a global issue in the current century.

کلیدواژه ها:

Daylight Glare Probability (DGP) ، vertical illuminance at eye level (lux) ، Ev ، machine learning ، Artificial Neural Network ، Building constructions

نویسندگان

Seyedeh Tabassom Beykaei

Department of Architecture, Sari Branch, Islamic Azad University, Sari, Iran

Fatemeh Mozaffari Ghadikolaei

Department of Architecture, Sari Branch, Islamic Azad University, Sari, Iran

Abdollah Ebrahimi

Department of Architecture , Sari Branch, Islamic Azad University, Sari, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • M.S. Barkhordari, M.S. Es-Haghi, Straightforward prediction for responses of the ...
  • J. Bromley and E. Sackinger, Neural-network and k-nearest-neighbor classifiers, AT&T ...
  • R.D. Clear, Discomfort glare: What do we actually know?, Lighting ...
  • Commission Internationale de l’Eclairage CTC ۳-۱۳, Discomfort glare in interior ...
  • V. Derbentsev, V. Babenko, K. Khrustalev, H. Obruch and S. ...
  • H. Drucker, C.J. Burges, L. Kaufman, A. Smola, and V. ...
  • H.D. Einhorn, Discomfort glare: A formula to bridge differences, Lighting ...
  • V.C. Handikherkar and V.M. Phalle, Gear fault detection using machine ...
  • T. Hastie, R. Tibshirani, J.H. Friedman and J.H. Friedman, The ...
  • M.B. Hirning, The application of luminance mapping to discomfort glare: ...
  • R.G. Hopkinson, Glare from daylighting in buildings, Appl. Ergon. ۳ ...
  • J.A. Jakubiec, Validation of simplified visual discomfort calculations, Build. Simul. ...
  • J.A. Jakubiec and C.F. Reinhart, DIVA ۲.۰: Integrating daylight and ...
  • J.A. Jakubiec and C. Reinhart, The ’adaptive zone’–A concept for ...
  • J.A. Jakubiec and C.F. Reinhart, A concept for predicting occupants’ ...
  • M.G. Kent, S. Altomonte, P.R. Tregenza and R. Wilson, Temporal ...
  • M. Khedmati, F. Seifi and M.J. Azizi, Time series forecasting ...
  • I. Konstantzos, A. Tzempelikos and Y.C. Chan, Experimental and simulation ...
  • T. Kruisselbrink, R. Dangol and A. Rosemann, Photometric measurements of ...
  • S. Kumar and G. Sahoo, A random forest classifier based ...
  • D. Mah, M. Kim and A. Tzempelikos, Utilization of programmable ...
  • D.S. Maitra, U. Bhattacharya and S.K. Parui, CNN based common ...
  • A. Mentens, S. Martin, F. Descamps, J. Lataire and V.A. ...
  • T.M. Mitchell, Machine Learning, McGraw-Hill, New York, ۲۰۰۷ ...
  • M. Namakshenas, Real-time scheduling of a flexible manufacturing system using ...
  • A. Nazzal, O. Guler and S. Onaygil, Subjective experience of ...
  • B. Painter, D. Fan and J. Mardaljevic, Evidence-based daylight research: ...
  • C. Pierson and M. Bodart, Validation and universalization of daylight ...
  • C. Reinhart and A. Fitz, Findings from a survey on ...
  • F. Rosenblatt, Principles of neurodynamics. perceptrons and the theory of ...
  • J.A.Veitch, Light, lighting, and health: Issues for consideration, LEUKOS–J. Illumin. ...
  • M. Piechowski and A. Rowe, Building design for hot and ...
  • G. Ward, Rendering with radiance: The art and science of ...
  • J. Wienold and J. Christoffersen, Towards a new daylight glare ...
  • J. Wienold and J. Christoffersen, Evaluation methods and development of ...
  • J. Wienold and Fraunhofer Institute for Solar Energy Systems ISE, ...
  • J. Wienold, T. Iwata, M. Sarey Khanie, E. Erell, E. ...
  • J.A. Yamin Garreton, R.G. Rodriguez, A. Ruiz and A.E. Pattini, ...
  • نمایش کامل مراجع