Ionospheric electron density reconstruction over central Europe using neural networks: A comparative study

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 129

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JASTI-17-1_003

تاریخ نمایه سازی: 29 بهمن 1402

چکیده مقاله:

Computerized Ionospheric Tomography (CIT) is a method to reconstruct ionospheric electron density image by computing Total Electron Content (TEC) values from the recorded GPS signals. Due to the poor spatial distribution of GPS stations, limitations of signal viewing angle and discontinuity of observations in time and space domain, CIT are an inverse ill-posed problem. In order to solve these problems, two new methods are developed and compared with the initial method of Residual Minimization Training Neural Network (RMTNN). Modified RMTNN (MRMTNN) and Ionospheric Tomography based on the Neural Network (ITNN) is considered as new methods of CIT. In all two methods, Empirical Orthogonal Functions (EOFs) are used to improve accuracy of vertical domain. Also, Back Propagation (BP) and Particle Swarm Optimization (PSO) algorithms are used to train the neural networks. To apply the methods for constructing a ۳D-image of the electron density, ۲۳ GPS measurements of the International GNSS Service (IGS) with different geomagnetic indexes are used. For validate and better assess reliability of the proposed methods, ۴ ionosondee stations have been used. Also the results of proposed methods have been compared to that of the NeQuick empirical ionosphere model. Based on the analysis and comparisons, the RMSE of the ITNN model at high geomagnetic activity in DOUR, JULI, PRUH and WARS ionsonde stations are ۱.۲۲, ۱.۴۶, ۱.۱۸ and ۱.۱۹ (۱۰۱۱ ele./m۳), respectively. The results show that RMSE of the ITNN model is less than other models in both high and low geomagnetic activities and in ionosonde stations.

کلیدواژه ها:

Total electron content ، Tomography ، Residual Minimization Training Neural Network ، Ionospheric Tomography based on the Neural Network ، GPS

نویسندگان

Seyyed Reza Ghaffari-Razin

Faculty of Geoscience Engineering, Arak University of Technology, Arak, Iran

Reza Davari-Majd

Department of Civil engineering, Islamic Azad University of Khoy, Khoy, Iran

Behzad Voosoghi

Faculty of Geodesy & Geomatics Engineering, K. N. Toosi University of Technology, Tehran, Iran

Navid Hooshangi

Faculty of Geoscience Engineering, Arak University of Technology, Arak, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • J. R., Austen, S.J., Franke, C. H., Liu, "Ionospheric imaging ...
  • V.E., Kunitsyn, I.A., Nesterov, A. M., Padokhin, U. S., Tumanova, ...
  • D., Pokhotelov, P., Jayachandran, C. N., Mitchell, J. W., MacDougall, ...
  • D. B., Wen, Y., Wang, R., Norman, "A new two-step ...
  • M.M.J.L., Van de Kamp, "Medium-scale ۴-D ionospheric tomography using a ...
  • M.R., Ghaffari Razin, "Development and analysis of ۳D ionosphere modeling ...
  • M.R., Ghaffari Razin, B., Voosoghi, "Regional ionosphere modeling using spherical ...
  • A., Yilmaz, K.E., Akdogan, M., Gurun, "Regional TEC mapping using ...
  • X.F., Ma, T., Maruyama, G., Ma, T., Takeda, "Three dimensional ...
  • S., Hirooka, K., Hattori, T., Takeda, "Numerical validations of neural-network-based ...
  • M. R., Ghaffari Razin, B., Voosoghi, "Regional application of multi-layer ...
  • L., Ciraolo, F., Azpilicueta, C., Brunini, A., Meza, S. M., ...
  • A., Liaqat, M., Fukuhara, T., Takeda, "optimal estimation of parameter ...
  • G., Seeber, "Satellite Geodesy, Foundations, Methods and Application", Walter de ...
  • A., Quarteroni, R., Sacco, F., Saleri, "Numerical Mathematics, ۳۷, Texts ...
  • A., Alexandridis, A., Zapranis, "Wavelet neural networks: A practical guide". ...
  • Y., Becerikli, Y., Oysal, A. F., Konar, "On a dynamic ...
  • S. A., Billings, H. L., Wei, "A new class of ...
  • Y., Oussar, G., Dreyfus, "Initialization by selection for wavelet network ...
  • L., Xu, D. W. C., Ho, "A basis selection algorithm ...
  • Q., Zhang, A., Benveniste, "Wavelet Networks". IEEE Trans. Neural Networks, ...
  • M. R., Ghaffari Razin, B., Voosoghi, " Wavelet neural networks ...
  • M. R., Ghaffari Razin, B., Voosoghi, " Modeling of ionosphere ...
  • نمایش کامل مراجع