AI-Enhanced GIS Solutions for Sustainable Coastal Management: Navigating Erosion Prediction and Infrastructure Resilience
محل انتشار: دومین کنفرانس بین المللی دستاوردهای خلاقانه معماری، شهرسازی، عمران و محیط زیست در توسعه پایدار خاورمیانه
سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 132
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
AUPCONF02_037
تاریخ نمایه سازی: 28 بهمن 1402
چکیده مقاله:
In the face of climate change and increasing anthropogenic pressures on coastal regions, the integration of Artificial Intelligence (AI) algorithms with Geographic Information Systems (GIS) emerges as a powerful solution for proactive coastal management. This article explores the implementation of advanced AI techniques within GIS frameworks to predict coastal erosion and enhance the resilience of marine infrastructure. We delve into the integration of machine learning models for erosion prediction, real-time monitoring through Internet of Things (IoT) devices, and the utilization of GIS for effective visualization and decision-making. The presented approach not only aids in predicting erosion risks but also contributes to adaptive planning, infrastructure maintenance, and sustainable development strategies. The synergy between AI and GIS in coastal applications represents a pivotal step towards resilient coastal ecosystems and robust marine structures in the era of dynamic environmental challenges.
کلیدواژه ها:
Geographic Information Systems (GIS) ، Artificial Intelligence (AI) ، Coastal Management ، Erosion Prediction ، Marine Infrastructure ، Machine Learning.
نویسندگان
سید رضا سمائی
Post-doctoral, Lecturer of Technical and Engineering Faculty, Science and Research Branch, Islamic Azad University, Tehran, Iran.
محمد اسدیان قهفرخی
Assistant professor, Department of Marine industries, Science and Research Branch, Islamic Azad University, Tehran, Iran.