Liver Segmentation in MRI Images using an Adaptive Water Flow Model

سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 112

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JBPE-11-4_013

تاریخ نمایه سازی: 30 دی 1402

چکیده مقاله:

Background: Identification and precise localization of the liver surface and its segments are essential for any surgical treatment. An algorithm of accurate liver segmentation simplifies the treatment planning for different types of liver diseases. Although liver segmentation turns researcher’s attention, it still has some challenging problems in computer-aided diagnosis. Objective: This study aimed to extract the potential liver regions by an adaptive water flow model and perform the final segmentation by the classification algorithm.Material and Methods: In this experimental study, an automatic liver segmentation algorithm was introduced. The proposed method designed the image by a transfer function based on the probability distribution function of the liver pixels to enhance the liver area. The enhanced image is then segmented using an adaptive water flow model in which the rainfall process is controlled by the liver location in the training images and the gray levels of pixels. The candidate liver segments are classified by a Multi-Layer Perception (MLP) neural network considering some texture, area, and gray level features. Results: The proposed algorithm efficiently distinguishes the liver region from its surrounding organs, resulting in perfect liver segmentation over ۲۵۰ Magnetic Resonance Imaging (MRI) test images. The accuracy of ۹۷% was obtained by quantitative evaluation over test images, which revealed the superiority of the proposed algorithm compared to some evaluated algorithms. Conclusion: Liver segmentation using an adaptive water flow algorithm and classifying the segmented area in MRI images yields more robust and reliable results in comparison with the classification of pixels.

نویسندگان

- -

PhD Candidate, Department of Biomedical Engineering, Kazerun Branch, Islamic Azad University, Kazerun, Iran

- -

PhD, Department of Electrical Engineering, Kazerun Branch, Islamic Azad University, Kazerun, Iran

- -

PhD, Department of Biomedical Engineering, Kazerun Branch, Islamic Azad University, Kazerun, Iran

- -

PhD, Department of Electrical and Computer Engineering, Urmia University, Urmia, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Bereciartua A, Picon A, Galdran A, Iriondo P. ۳D active ...
  • Massoptier L, Casciaro S. Fully automatic liver segmentation through graph-cut ...
  • Prasantha HS, Shashidhara HL, Murthy KN, Madhavi LG. Medical image ...
  • Lebre MA, Vacavant A, Grand-Brochier M, Rositi H, Strand R, ...
  • Sojar V, Stanisavljević D, Hribernik M, Glušič M, Kreuh D, ...
  • López-Mir F, Naranjo V, Angulo J, Alcañiz M, Luna L. ...
  • Gloger O, Kühn J, Stanski A, Völzke H, Puls R. ...
  • Liu H, Tang P, Guo D, Liu H, Zheng Y, ...
  • Said S, Mostafa A, Houssein EH, Hassanien AE, Hefny H. ...
  • Mostafa A, Hassanien AE, Houseni M, Hefny H. Liver segmentation ...
  • Huynh HT, Karademir I, Oto A, Suzuki K. Liver volumetry ...
  • Masoumi H, Behrad A, Pourmina MA, Roosta A. Automatic liver ...
  • Yuan Z, Wang Y, Yang J, Liu Y. A novel ...
  • Gloger O, Toennies K, Kuehn JP. Fully automatic liver volumetry ...
  • Platero C, Gonzalez M, Tobar MC, Poncela JM, Sanguino J, ...
  • Takenaga T, Hanaoka S, Nomura Y, Nemoto M, Murata M, ...
  • Kim IK, Jung DW, Park RH. Document image binarization based ...
  • Oh HH, Lim KT, Chien SI. An improved binarization algorithm ...
  • Otsu N. A threshold selection method from gray-level histograms. IEEE ...
  • Haralick RM, Shanmugam K, Dinstein IH. Textural features for image ...
  • Hagan MT, Demuth HB, Beale MH. Neural Network Design. Boston: ...
  • نمایش کامل مراجع