Liver Segmentation in MRI Images using an Adaptive Water Flow Model
محل انتشار: مجله فیزیک و مهندسی پزشکی، دوره: 11، شماره: 4
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 112
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JBPE-11-4_013
تاریخ نمایه سازی: 30 دی 1402
چکیده مقاله:
Background: Identification and precise localization of the liver surface and its segments are essential for any surgical treatment. An algorithm of accurate liver segmentation simplifies the treatment planning for different types of liver diseases. Although liver segmentation turns researcher’s attention, it still has some challenging problems in computer-aided diagnosis. Objective: This study aimed to extract the potential liver regions by an adaptive water flow model and perform the final segmentation by the classification algorithm.Material and Methods: In this experimental study, an automatic liver segmentation algorithm was introduced. The proposed method designed the image by a transfer function based on the probability distribution function of the liver pixels to enhance the liver area. The enhanced image is then segmented using an adaptive water flow model in which the rainfall process is controlled by the liver location in the training images and the gray levels of pixels. The candidate liver segments are classified by a Multi-Layer Perception (MLP) neural network considering some texture, area, and gray level features. Results: The proposed algorithm efficiently distinguishes the liver region from its surrounding organs, resulting in perfect liver segmentation over ۲۵۰ Magnetic Resonance Imaging (MRI) test images. The accuracy of ۹۷% was obtained by quantitative evaluation over test images, which revealed the superiority of the proposed algorithm compared to some evaluated algorithms. Conclusion: Liver segmentation using an adaptive water flow algorithm and classifying the segmented area in MRI images yields more robust and reliable results in comparison with the classification of pixels.
کلیدواژه ها:
نویسندگان
- -
PhD Candidate, Department of Biomedical Engineering, Kazerun Branch, Islamic Azad University, Kazerun, Iran
- -
PhD, Department of Electrical Engineering, Kazerun Branch, Islamic Azad University, Kazerun, Iran
- -
PhD, Department of Biomedical Engineering, Kazerun Branch, Islamic Azad University, Kazerun, Iran
- -
PhD, Department of Electrical and Computer Engineering, Urmia University, Urmia, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :