مقایسه روش های شبکه عصبی خود سازنده و آنالیز خوشه ای برای ارزیابی مقدار کربن آلی در سازندهای محتوی هیدروکربن با استفاده از سیستم های هوشمند
محل انتشار: مجله پژوهش نفت، دوره: 23، شماره: 75
سال انتشار: 1392
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 111
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_PRRIP-23-75_011
تاریخ نمایه سازی: 4 دی 1402
چکیده مقاله:
محتوای کل کربن آلی یکی از پارامترهای مهم جهت ارزیابی ژئوشیمیایی لایه های تولید کننده نفت و گاز است. در این مطالعه، طی دو مرحله، محتوای کربن آلی در سازندهای هیدروکربندار با استفاده از دادههای لاگ ارزیابی شده است. در مرحله اول، دادههای لاگ به مجموعهای از الکتروفاسیسها تقسیمبندی شدهاند. روشهای استفاده شده برای شناسایی و خصوصیتبندی الکتروفاسیسها شامل: شبکههای عصبی خود سازنده و روش آنالیز خوشه ای می باشد. نتایج حاصل از هر دو روش با یکدیگر مقایسه شده و براساس آزمونهای ارزیابی خوشهای، بهترین روش برای خوشهبندی دادههای پتروفیزیکی در الکتروفاسیسهای معین مورد استفاده قرار گرفت. مقدار کل کربن آلی با استفاده از دادههای لاگ به وسیله روشهای خاص شبکه عصبی برای هر الکتروفاسیس برآورد شد. در مرحله دوم، مقدار کل کربن آلی با استفاده از همان روش خاص شبکه عصبی و بدون در نظر گرفتن الکتروفاسیسها تعیین گردید. نتیجه دو روش با یکدیگر و همچنین با روشΔlogR مقایسه شد. نتایج نشان داد که خوشهبندی یک سازند به واحدهای مشخص (الکتروفاسیس) در مقایسه با مدل استخراج شده برای کل مجموعه دادهها بدون در نظر گرفتن خوشهبندی، مقدار کل کربن آلی سازند را با دقت بالاتری پیشبینی مینماید. در مجموع سیستمهای هوشمند نسبت به تکنیکهای قدیمی مبتنی بر روش ΔlogR مناسبتر میباشند. روش ارائه شده همراه با مثال موردی از بزرگ ترین مخزن گازی غیر همراه جهان، میدان گازی پارس جنوبی در حوضه خلیج فارس ارائه گردیده است.
کلیدواژه ها:
نویسندگان
ابراهیم سفیداری
دانشکده زمین شناسی، پردیس علوم، دانشگاه تهران
علی کدخدایی
گروه زمین شناسی، دانشکده علوم طبیعی، دانشگاه تبریز
محمد شریفی
دانشکده زمین شناسی، پردیس علوم، دانشگاه تهران
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :