Prediction of Patient’s Response to Cognitive-Behavior Therapy by Artificial Neural Network

سال انتشار: 1392
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 104

فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JPCP-1-4_008

تاریخ نمایه سازی: 4 دی 1402

چکیده مقاله:

Objective: Social anxiety disorder (SAD) is defined as a constant fear of being embarrassed or negatively evaluated in social situations or while doing activities in the presence of others. Several studies have examined the role of certain variables that might predict response to treatment and may affect treatment outcome. The purpose of this study was to identify predictive variables of change and improvement. Methods: The English version of the SPIN (Connor et al., ۲۰۰۰) was translated into Farsi and used in this study. In addition to SPIN, the measures including Clinical Interviews with the DSM-IV (Spitzer, Williams and Gibbons, ۱۹۹۴) and Depression, Anxiety and Stress Scale-۲۱ (DASS-۲۱) (Lovibond et al., ۱۹۹۵), the Credibility/Expectancy scale (Davilly & Borkovec, ۲۰۰۰) and Homework Compliance scale (Primakoff, Epstein, & Covi, ۱۹۸۶) were administered to a sample of ۵۹ participants with SAD ranging from ۱۸ to ۴۰ years of age. Results: Among the variables studied with the neural network model, logical sense in the Credibility/Expectancy scale (CEQ), depression in DASS, fear and avoidance in SPIN, and the compliance with homework (HCS) were significant in prediction of recovery rate. Conclusion: The artificial neural network is capable in predicting SAD patients;#۳۹ respond to cognitive-behavioral therapy.

کلیدواژه ها:

Social anxiety disorder ، Response to CBT ، Artificial neural network model

نویسندگان

Ebrahim Rezaei Dogaheh

Department of Clinical Psychology, University of Social Welfare & Rehabilitation Sciences, Tehran, Iran.