Using Hybrid Artificial Neural Network-Particle Swarm Optimization for Prediction of HIPS Mechanical Properties
محل انتشار: مجله علوم و فن آوری نفت، دوره: 10، شماره: 3
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 161
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JPSTR-10-3_006
تاریخ نمایه سازی: 30 آذر 1402
چکیده مقاله:
Artificial neural networks (ANN) have emerged as a useful artificial intelligence concept in various engineering applications. Also, ANN only recently has been used in modeling the mechanical behavior of polymers. This study aims to show the applicability of ANNs, to predict and determine the mechanical properties of High Impact Polystyrene (HIPS). Moreover, Izod, Vicat, and MFI of pure HIPS were considered, and the effect of ۲۵ different parameters on them investigated. By using ANN, a black-box model is considered as a calculator of mechanical properties. It is not easy to predict the accurate value of these properties without experimental works for two reasons: (۱) the nonlinear behavior of the polymerization process and (۲) the inaccuracy of experimental results of measurement of each of the properties. To overcome these problems, an alternative prediction model was proposed for calculating properties using a hybrid ANN-PSO model. All parameters in various cases have been gathered from the industrial DCS system and laboratory for the training of the ANN. First, by using the ANN model, the sensitivity analysis of parameters has been performed. It is then filtered using the effective ANN-PSO hybrid parameters. Out of ۲۵ proposed parameters, ۱۴, ۱۰, ۱۱ of them were selected in MFI, Izod, Vicat, respectively, and used to predict new parameters in the modified ANN. Ultimately, according to the obtained results, it was found that the hybrid ANN-PSO model was powerful in predicting properties with an average relative error of ۶, ۵, and ۱% for predicting considered properties between industrial and computed ANN-PSO hybrid model data.
کلیدواژه ها:
High impact polystyrene (HIPS) ، Izod ، VICAT ، MFI ، Artificial Neural Network (ANN) ، Particle swarm optimization (PSO) ، Hybrid ANN-PSO
نویسندگان
Medi Pakdel
Chemical Engineering Department, Islamic Azad University, Ilkhchi Branch, Ilkhchi, Iran
Alireza Behroozsarand
Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :