A Pre-Trained Ensemble Model for Breast Cancer Grade Detection Based on Small Datasets

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 138

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JHES-11-1_006

تاریخ نمایه سازی: 8 آذر 1402

چکیده مقاله:

Background and Purpose: Nowadays, breast cancer is reported as one of the most common cancers among women. Early detection of the cancer type is essential to help inform subsequent treatments. The newest proposed breast cancer detectors are based on deep learning. Most of these works focus on large datasets and are not developed for small datasets. Although large datasets may lead to more reliable results, their collecting and processing are challenging.  Materials and Methods: This paper proposes a new ensemble deep learning model for breast cancer grade detection based on small datasets. Our model uses some basic deep-learning classifiers to grade the breast tumors, including grades I, II, and III. Since none of the previous works focus on the datasets, including breast cancer grades, we have used a new dataset called Databiox to grade the breast cancers in the three grades. Databiox includes histopathological microscopy images from patients with invasive ductal carcinoma (IDC). Results: The performance of the model is evaluated based on the small dataset. We compare the proposed three-layer ensemble classifier with the most common single deep learning classifiers in terms of accuracy and loss. The experimental results show that the proposed model can improve the classification accuracy of the breast cancer grade compared to the other state-of-the-art single classifiers. Conclusion: The ensemble model can be also used for small datasets. In addition, they can improve the accuracy compared to the other models. This achievement is fundamental for the design of classification-based systems in computer-aided diagnosis.

نویسندگان

Farhang Jaryani

Department of Computer Engineering, Faculty of Engineering, Arak University, Arak, Iran.

Maryam Amiri

Department of Computer Engineering, Faculty of Engineering, Arak University, Arak, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • D. R. De Figueiredo, U. M. Azeiteiro, S. M. Esteves, ...
  • M. Arthur, "Institute for health metrics and evaluation," Nursing Standard ...
  • M. Akram, M. Iqbal, M. Daniyal and A. U. Khan, ...
  • H. Bolhasani, E. Amjadi, M. Tabatabaeian and S. J. Jassbi, ...
  • M. Veta, P. J. Van Diest, R. Kornegoor, A. Huisman, ...
  • P. P. Rosen, Rosen's breast pathology, Lippincott Williams & Wilkins, ...
  • A. M. Schwartz, D. E. Henson, D. Chen and S. ...
  • R. Fergus, P. Perona and A. Zisserman, "Object class recognition ...
  • Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu ...
  • J. Nourmohammadi-Khiarak, M. R. Feizi-Derakhshi, F. Razeghi, S. Mazaheri, Y. ...
  • Y. LeCun, Y. Bengio and G. Hinton, Deep learning, Nature, ...
  • F. Turati, M. Dalmartello, F. Bravi, D. Serraino, L. Augustin, ...
  • K. Simonyan and A. Zisserman, "Very deep convolutional networks for ...
  • S. Xie, R. Girshick, P. Dollár, Z. Tu and K. ...
  • A. A. Nahid and Y. Kong, "Involvement of machine learning ...
  • A. Ghatak, "Convolutional Neural Networks (ConvNets)," in Deep Learning with ...
  • P. Zohrevandi and F. Jaryani, "Proposing an Effective Framework for ...
  • C. Szegedy, S. Ioffe, V. Vanhoucke and A. A. Alemi, ...
  • D. Lu and Q. Weng, "A survey of image classification ...
  • E. S. Olivas, J. D. M. Guerrero, M. Martinez-Sober, J. ...
  • J. Nourmohammadi-Khiarak, S. Mazaheri, R. Moosavi-Tayebi and H. Noorbakhsh-Devlagh, "Object ...
  • F. A. Spanhol, L. S. Oliveira, C. Petitjean and L. ...
  • Y. M. George, H. H. Zayed, M. I. Roushdy and ...
  • M. Kowal, P. Filipczuk, A. Obuchowicz, J. Korbicz and R. ...
  • Q. Hu, H. M. Whitney and M. L. A. Giger, ...
  • T. Araújo, G. Aresta, E. Castro, J. Rouco, P. Aguiar, ...
  • Z. Han, B. Wei, Y. Zheng, Y. Yin, K. Li ...
  • J. Redmon, S. Divvala, R. Girshick and A. Farhadi, " ...
  • M. Tan and Q. Le, "Efficientnet: Rethinking model scaling for ...
  • M. Sandler, A. Howard, M. Zhu, A. Zhmoginov and L. ...
  • W. Wang, Y. Li, T. Zou, X. Wang, J. You ...
  • A. G. Howard, Z. M. B. Chen, D. Kalenichenko, W. ...
  • M. Sandler and A. Howard, "MobileNetV۲: The Next Generation of ...
  • J. Hu, L. Shen and G. Sun, "Squeeze-and-excitation networks," in ...
  • J. Chen, T. Yang, D. Zhang, H. Huang and Y. ...
  • U. Nazir, N. Khurshid, M. Ahmed Bhimra and M. Taj, ...
  • K. He, X. Zhang, S. Ren and J. Sun, " ...
  • S. Liu, L. Bai, Y. Hu and H. Wang, " ...
  • O. Russakovsky, J. Deng, H. Su, K. J. S. Satheesh, ...
  • Y. Wang, Deep Learning for Image Understanding, San Diego: University ...
  • F. Jaryani, M. R. B. Ahmad, S. Sahibuddin and J. ...
  • نمایش کامل مراجع