HYBRID ARTIFICIAL NEURAL NETWORKS BASED ON ACO-RPROP FOR GENERATING MULTIPLE SPECTRUM-COMPATIBLE ARTIFICIAL EARTHQUAKE RECORDS FOR SPECIFIED SITE GEOLOGY
سال انتشار: 1391
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 111
فایل این مقاله در 29 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJOCE-3-1_010
تاریخ نمایه سازی: 5 آذر 1402
چکیده مقاله:
The main objective of this paper is to use ant optimized neural networks to generate artificial earthquake records. In this regard, training accelerograms selected according to the site geology of recorder station and Wavelet Packet Transform (WPT) used to decompose these records. Then Artificial Neural Networks (ANN) optimized with Ant Colony Optimization and resilient Backpropagation algorithm and learn to relate the dimension reduced response spectrum of records to their wavelet packet coefficients. Trained ANNs are capable to produce wavelet packet coefficients for a specified spectrum, so by using inverse WPT artificial accelerograms obtained. By using these tools, the learning time of ANNs reduced salient and generated accelerograms had more spectrum-compatibility and save their essence as earthquake accelerograms.
کلیدواژه ها:
artificial earthquake accelerograms ، ant colony optimization algorithm ، wavelet packet transform ، artificial neural network ، principal component analysis ، resilient backpropagation algorithm
نویسندگان