Forecasting Wheat Production in Iran Using Time Series Technique and Artificial Neural Network

سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 117

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JASTMO-24-2_017

تاریخ نمایه سازی: 22 آبان 1402

چکیده مقاله:

With the increase of the world population, the worries and concerns for food supply increase too. Wheat, as one of the most important agricultural products, which is widely consumed all over the world, has a very important role in people's nutrition, particularly among Iranians, the diet of whom is highly dependent on bread. Product forecasting is critical for any country so that decisions about storage, import or export, etc. can be planned. In this paper, several univariate time series models and the Artificial Neural Network (ANN) model are used to forecast wheat production in Iran. Annual wheat production, total annual precipitation, total applied fertilizer, population, and wheat cultivated area data were used in the period between ۱۹۶۱-۱۹۶۲ to ۲۰۱۸-۲۰۱۹. With the minimum values of ۱.۴۵۸۹۴, ۱.۰۰۳۲۹, ۱.۰۴۴۸, and ۱.۰۹۷۴۲ obtained for RMSE, AIC, HQC, and SIBC criteria, respectively, Autoregressive Integrated Moving Average (ARIMA) (۱,۱,۱) was selected as the best univariate model. In testing the ANN models, total annual precipitation, total applied fertilizer, population, and wheat cultivated, area as input variables, and wheat production, as output variable, were used. Among several NN models, the Multilayer Perceptron Neural Network (MLP-NN) model with five hidden layers had the lowest MSE= ۰.۱۵۳ and was chosen in this study. Comparison between the ANN model and the ARIMA (۱,۱,۱) model showed that RMSE= ۰.۳۹۱, MSE= ۰.۱۵۳, and MAPE= ۰.۴۲۳۱ in the ANN model were much lower than that of the ARIMA (۱,۱,۱) model. The results showed the power of ANN models to predict wheat production using efficient parameters, as compared to the ARIMA model.

کلیدواژه ها:

Agriculture Production ، Autoregressive Integrated Moving Average Model.

نویسندگان

Z. Latifi

Department of Mechanical Engineering, Faculty of Engineering, Shohadaye Hoveizeh Campus of Technology, Shahid Chamran University of Ahvaz, Susangerd, Islamic Republic of Iran.

H. Shabanali Fami

Department of Agricultural Development and Management, Faculty of Agricultural Economics and Development, College of Agriculture and Natural Resources, University of Tehran, Karaj, Islamic Republic of Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Akaike, H. ۱۹۷۴. A New Look at the Statistical Model ...
  • Amin, M., Amanullah, M. and Akbar, A. ۲۰۱۴. Time Series ...
  • Asif Masood, M., Irum R. and Saleem A. ۲۰۱۸. Forecasting ...
  • Azadeh, A., Ghaderi, S. F., Anvari, M. and Saberi, M. ...
  • Balogun, O. S., Awoeyo, O. O., Akinrefon, A. A. and ...
  • Box, G. and Jenkins, G. ۱۹۷۰. Time Series Analysis: Forecasting ...
  • Box, G., Jenkins, G. and Reinsel, G. C. ۲۰۰۸. Multivariate ...
  • Burnham, K. P. and Anderson, D. R. ۲۰۰۲. Model Selection ...
  • Cheng, B. and Titterington, D. M. ۱۹۹۴. Neural Networks: A ...
  • Deepika, M. G., Gautam, N. and Rajkumar, M. ۲۰۱۲. Forecasting ...
  • FAO. ۲۰۲۰. Food and Agriculture Organization of the United Nations. ...
  • Goodwin, P., Onkal. D. and Thomas, M. ۲۰۱۰. Do Forecasts ...
  • Gujarati, N. D. ۲۰۰۴. Basic Econometrics. ۴th Edition, Tata McGraw-Hill, ...
  • Hanke, J. E. and Wichern, D. W. ۲۰۰۸. Business Forecasting. ...
  • Hashemi Nejad, A., abdeshahi, A., Ghanian, M. and Khosravipour, B. ...
  • Karim, R. and Akhter, M. ۲۰۱۰. Forecasting of Wheat Production ...
  • Latifi, Z., and Shabanali Fami, H. ۲۰۲۰. Investigating the Technical ...
  • Ministry of Agriculture Jihad. ۲۰۲۰. Agricultural Statistics-Crops. https://www.maj.ir/۲۱. Nath, B., ...
  • Niazian, M., Sadat-Noori, S. A. and Adibpour, M. ۲۰۱۸. Modeling ...
  • Niedbala, G. and Kozlowski, J. R. ۲۰۱۹. Application of Artificial ...
  • Patryk, H., Piekutowska, M. and Niedbala, G. ۲۰۲۱. Selection of ...
  • Paul, R. K. ۲۰۱۵. ARIMAX-GARCH-WAVELET Model for Forecasting Volatile Data. ...
  • Paul, R. K. and Sinha, K. ۲۰۱۶. Forecasting Crop Yield: ...
  • Safa, M., Samarasinghe, S. and Nejat, M. ۲۰۱۵. Prediction of ...
  • Salami, H. and Mohtashami, T. ۲۰۱۴. The Projection Model of ...
  • Shahriar, N. and Ghashghaei, Sh. (۲۰۱۸). Forecasting Global Wheat Prices ...
  • Shewry, P. R. and Hey, S. J. (۲۰۱۵). The Contribution ...
  • Tsay, R. ۲۰۰۵. Multivariate Time Series Analysis and Its Applications. ...
  • World Bank Group. ۲۰۲۰. Climate Change Knowledge Portal (CCKP). https://climateknowledgeportal.worldbank.org ...
  • Zinyengerea, N., Mhizha, T., Mashonjowa, E., Chipindu, B., Geerts, S. ...
  • نمایش کامل مراجع