Thermal, ANFIS, and Polynomial Neural Network Models for Predicting Environmental Variables in an Arch Greenhouse
محل انتشار: مجله علوم و فناوری کشاورزی، دوره: 24، شماره: 3
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 162
فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JASTMO-24-3_009
تاریخ نمایه سازی: 22 آبان 1402
چکیده مقاله:
The aim of this study was to design an Adaptive Neuro-Fuzzy Inference Mechanism (ANFIS) and a Polynomial Neural-Network (PNN) to improve modeling and identification of some climate variables within a greenhouse. Furthermore, a Stable Deviation Quantum-Behaved Particle Swarm Optimization (SD-QPSO) algorithm was employed as a learning algorithm to train the constant parameters of ANFIS and PNN structures. To denoise measured data, a wavelet transform method was applied to ensure that no measured data exceeds a predefined interval. Moreover, to show the modeling performance, a set of differential equations were derived as a dynamical model based on the computation of energy and mass balance in a specified greenhouse. The results of modeling and simulation were evaluated with the experimental results of an experimental arch greenhouse. The results showed that the proposed models were more accurate in predicting greenhouse climate and could be used more easily. Moreover, this study showed that the PNN model with less pop-size and evaluation function was more effective than the ANFIS structure to predict the temperatures of inside air and inside roof cover. In this study, an on-line identification system is also proposed for real time identification of experimental data. The obtained simulation results show that performance of the proposed modeling structures and identification system are effective to predict and identify the soil surface, internal air, and roof cover temperatures of the greenhouse. This study shows that the identification algorithm can be used to predict and confirm the results of the model.
کلیدواژه ها:
نویسندگان
J. Javadi Moghaddam
Agricultural Engineering Research Institute (AERI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Islamic Republic of Iran.
D. Momeni
Agricultural Engineering Research Institute (AERI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
Gh. Zarei
Agricultural Engineering Research Institute (AERI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Islamic Republic of Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :