A powerful recommender system in artificial intelligence for harvesting renewable energies
محل انتشار: پانزدهمین کنگره ملی و اولین کنگره بین المللی مهندسی مکانیک بیوسیستم و مکانیزاسیون کشاورزی
سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 157
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
NCAMEM15_051
تاریخ نمایه سازی: 16 آبان 1402
چکیده مقاله:
The electric grid has already been transitioned towards a more flexible, intelligent, and interactive grid system, i.e., Smart Grid (SG) for load management, energy prediction, higher penetration of renewable energy generation, future planning, and operations. However, there is a huge gap between energy demand and supply due to the rise of different electric products and electric vehicles. Renewable Energy Harvesting (REH) plays a critical role in managing this demand response gap, where energy is generated from various renewable energy resources such as Solar Photo Voltaic (SPV) and wind energy. Several research works exist in this regard. However, they have not yet been exploited fully. So, this paper proposed AI-RSREH approach, i.e., the AI-empowered Recommender System for REH in residential houses. The main goal of the proposed AI-RSREH approach is to predict energy generation based on SPV accurately, and this study aims to minimize the gap between the actual generation of energy and the predicted energy generation along with a recommender system for SPV installation. An exploratory residential house-wise data analytics is conducted for the demand response gap. AI-RSREH uses a stacked Long-Short Term Memory (LSTM) model to predict energy generation with a recommender system based on the energy generation prediction result. The obtained results show the efficacy of the proposed approach compared to the existing methods with respect to parameters such as SPV installation in residential houses and prediction accuracy.
کلیدواژه ها:
نویسندگان
Mohammadreza Mohammadiyan Asiabar
Master's degree, Islamic Azad University, Karaj Branch, Karaj;
Jabber koochaki
Master's degree, Islamic Azad University, Karaj Branch, Karaj