۲-D Anticlinal Structure Modeling Using Feed-Forward Neural Network (FNN) Inversion of Profile Gravity Data: A Case Study from Iran
محل انتشار: مجله فیزیک زمین و فضا، دوره: 46، شماره: 4
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 135
فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JESPHYS-46-4_007
تاریخ نمایه سازی: 26 مهر 1402
چکیده مقاله:
The Anticlines are the main hydrocarbon traps on land or at sea. This structure is considered as the target of the many projects of gravity exploration all over the world. Artificial neural networks (ANNs) are used in order to solve prediction, estimation, and optimization problems. In this paper, the feed-forward neural network (FNN) is applied for modeling the anticlinal structure using gravity anomaly profile and the back propagation algorithm is used for artificial neural network training. Moreover, the scalene triangle model is employed to describe the geometry of anticlinal structure in analyzing gravity anomalies. In terms of neural network training, eight features among the synthetic gravity field variations curves along ۲۲۵۰۰ profiles are defined. These gravity profiles are computed based on different values of the scalene triangle parameters consisting of the top depth, bottom depth, limb angles and density contrast. The defined neural network contain three layers, eight neurons (the number of features) in the input layer, ۳۰ neurons in the hidden layer and six neurons (the number of scalene triangle parameters) in the output layer. In order to evaluate the performance of the trained neural network, the specified features related to a synthetic model, with and without random noise, are applied as the input data to train neural network. The parameters estimation error by FNN is negligible. The proposed method is illustrated with a real gravity data set from Korand region, Iran. The inferred anticlinal structures are compared with the interpreted map of the seismic data.
کلیدواژه ها:
نویسندگان
Ata Eshaghzadeh
Ph.D. Student, Department of Geology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
Sanaz Seyedi Sahebari
Instructor, Department of civil Engineering, University College of Nabi Akram, Tabriz, Iran
Roghayeh Sadat Kalantari
M.Sc. Graduated, Department of Earth Physics, Institute of Geophysics, University of Tehran, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :