Feature Engineering Methods in Intrusion Detection System: A Performance Evaluation

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 140

نسخه کامل این مقاله ارائه نشده است و در دسترس نمی باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJE-36-7_018

تاریخ نمایه سازی: 7 خرداد 1402

چکیده مقاله:

Today, the number of cyber-attacks has increased and become more complex with the increase in the size of high-dimensional data, which includes noisy and irrelevant features. In such cases, the removal of irrelevant and noisy features, by Feature Selection (FS) and Dimensions Reduction (DR) methods, can be very effective in increasing the performance of intrusion detection systems (IDS). This paper compares some FS and DR methods for detecting cyber-attacks with the best accuracy using implementation on KDDCUP۹۹ dataset. A Deep Neural Network (DNN) is used for training and simulating them. The results show the filter methods are faster than wrapper methods but less accurate. Whereas the Wrapper methods have more accuracy but are computationally costlier. Embedded methods have the best output and maximum values, which is ۹۹% for all the metrics, comparing to it the DR methods have shown a good performance and speed, among them the (Linear Discriminant Analysis) LDA method even better than embedded method.

نویسندگان

Payam Mahmoudi-Nasr

Computer Eng. Department, University of Mazandaran

Faeze Zare

Computer Eng. Dep. University of Mazandaran