Feature Engineering Methods in Intrusion Detection System: A Performance Evaluation
محل انتشار: ماهنامه بین المللی مهندسی، دوره: 36، شماره: 7
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 140
نسخه کامل این مقاله ارائه نشده است و در دسترس نمی باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-36-7_018
تاریخ نمایه سازی: 7 خرداد 1402
چکیده مقاله:
Today, the number of cyber-attacks has increased and become more complex with the increase in the size of high-dimensional data, which includes noisy and irrelevant features. In such cases, the removal of irrelevant and noisy features, by Feature Selection (FS) and Dimensions Reduction (DR) methods, can be very effective in increasing the performance of intrusion detection systems (IDS). This paper compares some FS and DR methods for detecting cyber-attacks with the best accuracy using implementation on KDDCUP۹۹ dataset. A Deep Neural Network (DNN) is used for training and simulating them. The results show the filter methods are faster than wrapper methods but less accurate. Whereas the Wrapper methods have more accuracy but are computationally costlier. Embedded methods have the best output and maximum values, which is ۹۹% for all the metrics, comparing to it the DR methods have shown a good performance and speed, among them the (Linear Discriminant Analysis) LDA method even better than embedded method.
کلیدواژه ها:
نویسندگان
Payam Mahmoudi-Nasr
Computer Eng. Department, University of Mazandaran
Faeze Zare
Computer Eng. Dep. University of Mazandaran