Experimental investigation and modeling of fiber metal laminates hydroforming process by GWO optimized neuro-fuzzy network
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 179
فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JCARME-12-2_005
تاریخ نمایه سازی: 19 فروردین 1402
چکیده مقاله:
In this paper, by considering the processing parameters, including blank holder force, blank holder gap, and cavity pressure as the most important input factors in the hydroforming process, an experimental design is performed, and an adaptive neural-fuzzy inference system (ANFIS) is applied to model and predict the behavior of aluminum thinning rate (upper layer and lower layer), the height of wrinkles and achieved depths that are extracted in hydroforming process. Also, the optimal constraints of the network structure are obtained by the gray wolf optimization algorithm. Accordingly, the results of experimental tests are utilized for training and testing of the ANFIS. The accurateness of the attained network is examined using graphs and also based on the statistical criteria of root mean square error, mean absolute error, and correlation coefficient. The results show that the attained model is very effective in approximating the aluminum thinning rate (upper layer and lower layer), the height of wrinkles, and achieved depth in the hydroforming process. Finally, the results also show that the root means of the square error of aluminum thinning rate (upper layer and lower layer), the height of wrinkles, and achieved depth of the test section are ۱.۶۷, ۲.۲۵, ۰.۰۵, and ۲.۶۷, respectively. It is also observed that the correlation coefficient for the test data is very close to ۱, which demonstrates the high precision of the ANFIS in predicting the outputs of the hydroforming procedure.
کلیدواژه ها:
نویسندگان
Amir Hossein Rabiee
Department of Mechanical Engineering, Arak University of Technology, Arak, Iran
Ehsan Sherkatghanad
Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
Ali Zeinolabedin Beygi
Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
Hassan Moslemi Naeini
Department of Mechanical Engineering, Faculty of Engineering, Tarbiat Modares University, P.O.Box ۱۴۱۱۵/۱۴۳, Tehran, I.R. Iran
Lihui Lang
Department of Industrial and Manufacturing System Engineering, Beihang University, Beijing, China
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :