Improving the Accuracy of Detecting Cancerous Tumors Based on Deep Learning on MRI Images
محل انتشار: فصلنامه ادوات مخابراتی، دوره: 11، شماره: 4
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 227
فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_TDMA-11-4_002
تاریخ نمایه سازی: 11 اسفند 1401
چکیده مقاله:
The continuous progress of photography technologies as well as the increase in the number of images and their applications requires the emergence of new algorithms with new and different capabilities. Among the various processes on medical images, the segmentation of medical images has a special place and has always been considered and investigated as one of the important issues in the processing of medical images. Based on this, in this research, a solution to diagnose the tumor through the use of a combined method based on watershed algorithm, co-occurrence matrix and neural networks has been presented, so that through the use of this combined solution, the tumor can be detected with high accuracy. Medical images diagnosed. According to the method used in this research, as well as the implementation of the solution in the Python environment and through the use of CV۲ and SimpleITK modules, it is possible to set parameters such as accuracy, correctness, recall and Fscore criteria. which are always important parameters that are investigated in researches, improved compared to the past and achieved favorable results. This will increase the improvement of tumor detection in the brain compared to Thersholding and TKMeans methods.
کلیدواژه ها:
نویسندگان
Milad Ghasemi
Sepahan Institute of Higher Education of Science and Techniques, Isfahan, Iran
Maryam Bayati
Sepahan Institute of Higher Education of Sciences and Techniques, Isfahan, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :