توسعه مدل پیش بینی عمق شیارشدگی مخلوط های آسفالتی گرم با استفاده از شبکه عصبی
محل انتشار: فصلنامه مهندسی عمران فردوسی، دوره: 35، شماره: 4
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 212
فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CIVIL-35-4_001
تاریخ نمایه سازی: 9 اسفند 1401
چکیده مقاله:
محققان و مهندسان دائما در تلاش هستند تا عملکرد روسازیهای آسفالتی را بهبود بخشند. روسازیها، به عنوان سطوحی که اغلب توسط محورهای سنگین بارگیری میشوند، باید مقاومت کافی در برابر خستگی ، ترک خوردگی و شیارشدگی داشته باشند. در این مقاله با استفاده از داده های به دست آمده از نتایج آزمایشگاهی مطالعه قبلی که مخلوطهای آسفالتی گرم(WMA) اصلاح شده با الیاف شیشه و ۰، ۲۰، ۴۰ و ۵۰ درصد آسفالت تراشیده شده بازیافتی (RAP) برای بررسی مقاومت مخلوط در برابر شیارشدگی ساخته شدند، پیش بینی عمق شیارشدگی مخلوط ها توسط شبکههای عصبی مصنوعی چندلایه (MLP) و شعاعی پایه (RBF) انجام شد و نتایج با یکدیگر مقایسه شدند. مدل پیشبینی عمق شیارشدگی و پیش تراکم با نتایج تجربی مطابقت خوبی نشان دادند. برای بررسی قدرت تعمیم شبکه عصبی با استفاده از دادههایی که در طول مدل سازی به کار گرفته نشده بودند، شبکه عصبی چندلایه عملکرد بهتری نسبت به شبکه عصبی شعاعی پایه داشت.
کلیدواژه ها:
نویسندگان
مهسا روحی فریمان
دانشکده عمران ، دانشگاه صنعتی شاهرود
سید علی حسینی
دانشکده عمران، دانشگاه صنعتی شاهرود
منصور فخری
راه و ترابری، دانشکده عمران، دانشگاه صنعتی خواجه نصیر الدین طوسی
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :