ارزیابی عملکرد مدلهای هوشمند در تخمین دمای نقطه شبنم با استفاده از پارامترهای هواشناسی
محل انتشار: فصلنامه دانش آب و خاک، دوره: 32، شماره: 3
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 274
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_WASO-32-3_008
تاریخ نمایه سازی: 24 دی 1401
چکیده مقاله:
دمای نقطه شبنم دمایی است که در آن هوا تحت فشار ثابت به صورت اشباع از بخار آب شود. هدف از تحقیق حاضر، ارزیابی توانایی مدل های شبکه های عصبی مصنوعی(ANN) و رگرسیون کمانکی تطبیقی چند متغییره (MARS) در تخمین دمای نقطه شبنم با استفاده از پارامترهای هواشناسی در ایستگاه سینوپتیک خوی واقع در شمال غرب ایران می باشد. پارامترهای هواشناسی استفاده شده شامل دمای حداقل(Tmin)، دمای حداکثر (Tmax)، دمای متوسط (T)، رطوبت نسبی (RH)، رطوبت نسبی حداقل (RHmin)، رطوبت نسبی حداکثر (RHmax)، تابش خورشیدی (S)، سرعت باد (W)، فشار ایستگاه(Pa (، فشار بخار واقعی(ea) و فشار بخار اشباع (es) بودند. پارامترهای مذکور با ترکیبهای مختلفی به عنوان ورودی به مدلهای مورد استفاده وارد شدند. برای ارزیابی نتایج خروجی مدلها از میانگین مربعات خطا (RMSE)، میانگین مطلق خطا (MAE) و ضریب تبیین (R۲) به عنوان معیارهای ارزیابی استفاده گردید. بر اساس نتایج حاصله فشار بخار واقعی(e_a) و دمای حداقل(Tmin)، موثرترین پارامترها در تخمین دمای نقطه شبنم بودند. همچنین نتایج نشان داد که دو مدل مورد استفاده از دقت خوبی جهت تخمین دمای نقطه شبنم با استفاده از پارامترهای هواشناسی برخوردار هستند. با این وجود، مدل رگرسیون کمانکی تطبیقی چند متغییره عملکرد بهتری نسبت به مدل شبکه عصبی مصنوعی در تخمین دمای نقطه شبنم داشت. در مجموع، در بین همه پارامترها و مدلها، مدل MARS با ورودی فشار بخار واقعی و RMSE= ۰.۶۳۳ºC ، MAE= ۰.۴۸۰ºC و=۰.۹۹۱ R۲ برای حالت آزمون دقیق ترین تخمین را از دمای نقطه شبنم نتیجه داد.
کلیدواژه ها:
نویسندگان
سید فرهنگ حسینی
دانش آموخته کارشناسی ارشد، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیه
جواد بهمنش
استاد، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیه
وحید رضاوردی نژاد
استاد، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیه
ندا خان محمدی
دانش آموخته دکتری، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیه
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :