ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
ناشر تخصصی کنفرانسهای ایران
ورود |عضویت رایگان |راهنمای سایت |عضویت کتابخانه ها
عنوان
مقاله

تفسیر داده های چاه آزمایی با استفاده از شبکه های عصبی و رگرسیون غیرخطی

سال انتشار: 1391
کد COI مقاله: ICOGPP01_172
زبان مقاله: فارسیمشاهده این مقاله: 958
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

خرید و دانلود فایل مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای 10 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله تفسیر داده های چاه آزمایی با استفاده از شبکه های عصبی و رگرسیون غیرخطی

مصطفی فرامرزی - دانشجو کارشناسی ارشد مخازن هیدروکربوری
امیر صرافی - دانشیار، گروه مهندسی شیمی، دانشگاه شهید باهنر کرمان
مهین شفیعی - دانشیار، گروه مهندسی شیمی، دانشگاه شهید باهنر کرمان
حسین نظام آبادی پور - دانشیار دانشگاه شهید باهنر کرمان

چکیده مقاله:

با توجه به اهمیت تفسیر داده های چاه آزمایی در صنعت نفت، در این مقاله از ترکیب شبکه های عصبی مصنوعی ورگرسیون غیرخطی برای این منظور استفاده شده است . بدین منظور از شبکه های عصبی مصنوعی برای شناساییویژگی های نمودار مشتق بهره گرفته شده است و با آنالیز نتایج خروجی از شبکه عصبی، رژیمهای جریانی شناخته شده، سپس داده های مربوط به هر رژیم جریانی شناخته شده، برای تخمین اولیه پارامترهای مخزن به کار گرفتهشده است. سپس با استفاده از روش آماری بین مدل های مخزن تمایز داده شده و بهترین مدل منتخب برای مخزن مورد نظرانتخاب شده است و نهایتا تخمین نهایی از پارامترهای مخزن با استفاده از رگرسیون غیرخطی و الگوریتماستفست به دست آمده است. شبکه عصبی آموزش دیده در بیشتر اوقات قادر به شناسایی رژیم های جریانی مخزن است. در الگوریتم نوشته شده یک سری قواعد تجربی نیز دخالت داده شده است تا در مواردی که شبکه عصبی قادر به شناسایی صحیح رژیم های جریانی نیست تخمینی از زمان شروع رژیم جریانی به ما بدهد

کلیدواژه ها:

شبکه عصبی – فاصله اطمینان – رگرسیون غیر خطی – الگوریتم استفست(Stehfest Algorithm

کد مقاله/لینک ثابت به این مقاله

کد یکتای اختصاصی (COI) این مقاله در پایگاه سیویلیکا ICOGPP01_172 میباشد و برای لینک دهی به این مقاله می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:

https://civilica.com/doc/158152/

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
فرامرزی، مصطفی و صرافی، امیر و شفیعی، مهین و نظام آبادی پور، حسین،1391،تفسیر داده های چاه آزمایی با استفاده از شبکه های عصبی و رگرسیون غیرخطی،اولین کنفرانس بین المللی نفت، گاز، پتروشیمی و نیروگاهی،تهران،،،https://civilica.com/doc/158152

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1391، فرامرزی، مصطفی؛ امیر صرافی و مهین شفیعی و حسین نظام آبادی پور)
برای بار دوم به بعد: (1391، فرامرزی؛ صرافی و شفیعی و نظام آبادی پور)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :

  • _ M., Douglas, A.A. and Firard, Y.M.(198. "A New Set ...
  • مدیریت اطلاعات پژوهشی

    صدور گواهی نمایه سازی | گزارش اشکال مقاله | من نویسنده این مقاله هستم
    این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

    اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    مقالات پیشنهادی مرتبط

    مقالات مرتبط جدید

    به اشتراک گذاری این صفحه

    اطلاعات بیشتر درباره COI

    COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

    کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.

    پشتیبانی