پیش بینی شاخص سهام با استفاده از ترکیب شبکه عصبی مصنوعی و مدل های فرا ابتکاری جستجوی هارمونی و الگوریتم ژنتیک
محل انتشار: فصلنامه اقتصاد مالی، دوره: 11، شماره: 40
سال انتشار: 1396
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 255
فایل این مقاله در 23 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ECJ-11-40_001
تاریخ نمایه سازی: 27 آذر 1401
چکیده مقاله:
هدف پژوهش حاضر پیش بینی شاخص قیمت بورس اوراق بهادار تهران با استفاده از مدل شبکه عصبی هیبریدی مبتنی بر الگوریتم ژنتیک و جستجوی هارمونی است. مربوط ترین نماگرهای تکنیکی به عنوان متغیرهای ورودی و تعداد بهینه نرون در لایه پنهان شبکه عصبی مصنوعی با استفاده از الگوریتم های فراابتکاری ژنتیک و جستجوی هارمونی حاصل می گردد. مقادیر روزانه شاخص قیمت بورس اوراق بهادار تهران از تاریخ ۱/۱۰/۹۱ الی ۳۰/۹/۹۴ جهت پیش بینی شاخص قیمت و آزمون آن استفاده می شود. دقت پیش بینی سه مدل شبکه عصبی عادی، شبکه عصبی هیبریدی مبتنی بر الگوریتم ژنتیک و شبکه عصبی هیبریدی مبتنی بر جستجوی هارمونی بر اساس میزان خطای پیش بینی ارزیابی می گردد. نتایج حاصله نشان می دهد دقت پیش بینی مدل های فراابتکاری ژنتیک و جستجوی هارمونی در دوره آزمون بالاتر از شبکه عصبی عادی است. همچنین پیش بینی مدل شبکه عصبی هیبریدی مبتنی بر جستجوی هارمونی در دوره آزمون نسبت به مدل شبکه عصبی مصنوعی هیبریدی مبتنی بر الگوریتم ژنتیک از دقت بالاتری برخوردار است. This study is aimed to predict the price index of Tehran Stock Exchange using hybrid Artificial Neural Network (ANN) models based on Genetic Algorithms (GA) and Harmony Search (HS). The most relevant technical indicators as inputs and the optimal number of neurons in hidden layer of Artificial Neural Network are achieved by metaheuristics including Genetic Algorithms and Harmony Search. Daily price index of Tehran Stock Exchange from ۲۱ December ۲۰۱۲ to ۲۱ December ۲۰۱۵ applied to predict and test stock index. The accuracy of forecasting of three models including Regular Artificial Neural Network model, hybrid neural networks based on GA and hybrid neural networks based on HS is evaluated by the prediction error. The results show that the accuracy of prediction in Metaheuristics models such as Genetic Algorithms and Harmony Search in test period is higher than normal Artificial Neural Network. Also prediction by hybrid neural network model based on harmony Search during the test period compared to hybrid Artificial Neural Network model based on Genetic Algorithm is more accurate.
کلیدواژه ها:
نماگرهای تکنیکی ، شبکه عصبی مصنوعی ، الگوریتم ژنتیک ، جستجوی هارمونی. طبقه بندی JEL : D۸۳ ، C۴۵ ، C۶۱ ، C۶۳
نویسندگان
مریم دولو
استادیار مدیریت مالی، دانشکده مدیریت و حسابداری، دانشگاه شهید بهشتی، تهران، ایران
تکتم حیدری
دانشجوی کارشناسی ارشد مدیریت مالی، دانشگاه ارشاد دماوند، تهران، ایران
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :