تشخیص میزان درگیری ریوی بیماران کووید-۱۹ در تصاویر سی تی اسکن قفسه سینه با استفاده از الگوریتم تکامل تفاضلی خود تطبیق

سال انتشار: 1401
نوع سند: مقاله کنفرانسی
زبان: فارسی
مشاهده: 87

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ECMECONF12_024

تاریخ نمایه سازی: 4 مرداد 1401

چکیده مقاله:

با فراگیری بیماری کرونا در سراسر دنیا ، استفاده از تکنیکهای پردازش تصویر و الگوریتم های هوش مصنوعی جهت آنالیز تصاویر سیتیاسکن (CXR) قفسه سینه بیماران مبتلا به کووید-۱۹ضرورت بیش از پیش یافته است تعیین درصد پیشرفت و گسترش ویروس کووید-۱۹در ناحیه ریه شخص بیمار یکی از نیازمندیهای اساسی و ضروری مراکز بستری بیماران کووید-۱۹ محسوب میگردد. بیشترین تحقیقات در این حوزه، به مقالات مبتنی بر روشهای یادگیری عمیق با بکارگیری شبکه های عصبی کانولوشن اختصاص داشته، که عمدتا به موضوع غربالگری افراد بیمار و سالم میپردازند. در این میان تعداد معدودی از مقالات به موضوع تعیین درصد درگیری ریوی و پیشرفت ویروس در بیماران کرونایی بر اساس تصاویر CXR میپردازند. تشخیص میزان درگیری ریه بیماران، بر اساس تصاویر متفاوت CXR در روزهای متوالی، دارای معضلات و مشکلات خاص خود از جمله تفاوت در ابعاد، شدت روشنایی، میزان دوز و زاویه تابش اشعه در این تصاویر بوده که بکارگیری یک فیلتر تفاضل گیر ساده روی داده های دو تصویر را غیرممکن میسازند. بکارگیری یک روش بهینه سازی خود تطبیق با ماهیت تفاضلی و چند هدفه میتواند دقت و صحت کار را افزایش و زمان تحلیل را کاهش دهد.

کلیدواژه ها:

اشعه ایکس قفسه سینه ، الگوریتم تکامل تفاضلی خود تطبیق چند هدفه ، پردازش تصویر ، درگیری ریوی ، کووید-.۱۹

نویسندگان

علی کارساز

دانشیار موسسه آموزش عالی خراسان

رقیه اکبریان

کارشناسی ارشد موسسه آموزش عالی خراسان

علی سلطانی نژاد محمدی

دانشکده فنی و حرفه ای شهید محمد منتظری مشهد