An Effective Model Presentation for Solar Irradiance Prediction using Deep Learning Neural Network
سال انتشار: 1400
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 278
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICREDG09_062
تاریخ نمایه سازی: 23 خرداد 1401
چکیده مقاله:
World energy demand is increasing and among renewable energy sources, solar as a clean energy source plays an important role in energy supply. The variability of the solar energy source makes it difficult to operate and manage the power system. Therefore, a very short-term forecasting of solar irradiance is required to operate the power grid efficiency and reliably against these fluctuations. In this study, a model is proposed for a very short-term solar irradiance prediction based on sky images and deep learning. A series of whole sky images are performed to detect and track the movement of clouds for ۱۰ minutes ahead using dense optical flow. Then, the solar irradiance is forecasted using predicted images of cloud motion via ResNet۵۰ deep learning algorithm. The proposed model is evaluated by the Root Mean Square Error (RMSE), R-Squared Correlation ( ) between the actual and forecast values of solar irradiance.
کلیدواژه ها:
نویسندگان
Zahra Jalali
Student Member,Department of Electrical Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran
Seyed-Masoud Moghaddas-Tafreshi
Department of Electrical Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran