Investigating the effect of data augmentation on the performance of machine learning and deep learning methods in detecting fraudulent credit card transactions

سال انتشار: 1401
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 290

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

DCBDP07_063

تاریخ نمایه سازی: 7 خرداد 1401

چکیده مقاله:

With the growth of e-banking in recent years, the rate of fraud in credit card transactions has increased. Therefore, establishing a fraud detection system for financial institutions is of particular importance. The utilized datasets in the fraud detection context always have the problem of class imbalance. Various methods have been used in previous research to build classification models. In this research, we aim to investigate the effect of the data augmentation method on the performance of conventional machine learning methods and deep learning methods. For this purpose, widely-used machine learning techniques, including decision tree, support vector machine, and random forest, along with two deep neural network models are employed. The results of experiments show that data augmentation leads to an increase in the performance of the random forest in terms of F۱-Measure. It achieves the best performance among the compared methods. Also, the results indicate that in general, the use of data augmentation increases the performance of models in terms of recall but decreases precision. Besides, data augmentation reduces the performance of deep learning methods.

نویسندگان

Hosein Fanai

Faculty of Information Technology and Computer Engineering Azarbaijan Shahid Madani University Tabriz, Iran

Hossein Abbasimehr

Faculty of Information Technology and Computer Engineering Azarbaijan Shahid Madani University Tabriz, Iran