Missing data imputation using supervised learning methods

سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 211

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JSMTA-2-1_011

تاریخ نمایه سازی: 19 اردیبهشت 1401

چکیده مقاله:

Missing data is a very common problem in all research fields. Case deletion is a simple way to handle incomplete data sets which could mislead to biased statistical results. A more reliable approach to handle missing values is imputation which allows covariate-dependent missing mechanism, as well. This paper aims to prepare guidance for researchers facing missing data problems by comparing various imputation methods including machine learning techniques, to achieve better results in supervised learning tasks. A benchmark dataset has experimented and the results are compared by applying popular classifiers over varying missing mechanisms and rates on this benchmark dataset.

نویسندگان

Behzad Rezaei Shiri

School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran

Samaneh Eftekhari Mahabadi

School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran