سال انتشار: 1400
محل انتشار: نهمین کنگره مشترک سیستم های فازی و هوشمند ایران
کد COI مقاله: FJCFIS09_036
زبان مقاله: فارسیمشاهده این مقاله: 110
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای 6 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:
مشخصات نویسندگان مقاله تشخیص گریه نوزاد از سایر صداهای محیط با استفاده از یادگیری عمیق
چکیده مقاله:
مهم ترین راه ارتباطی نوزادان با دنیای اطراف گریه آن ها است. علاوه بر درک نیازهای روزمره نوزادان، پیش بینی بیماری یکی دیگر از وظایف مهم در تحقیقات گریه نوزاد است. سیستم های هوشمند تشخیص گریه نوزاد زمینه ساز ساخت ربات های هوشمند مراقبتی خواهند بود. سیگنال های گریه نوزادان حاوی ویژگی های منحصر به فردی است که با استفاده از این ویژگی ها می توان گریه نوزادان را از سایر اصوات محیط تشخیص داد. اغلب دیتاهای موجود در این زمینه صداها ی ضبط شده توسط افراد در NICU و یا در خانه توسط والدین است. دراین پژوهش صدای گریه نوزادان از سایر اصوات محیط تشخیص داده شده است. دراین مسیر از ضرایب کپسترال فرکانس مل۱ (MFCC) بهره بردیم و عملکرد شبکه ها ی عصبی عمیق پیچشی ۲ (CNN) و حافظه طولانی- کوتاه مدت ۳ (LSTM) را بررسی کردیم و برتری روش خود را بر اساس معیارهای دقیق تر و جامع تری از جمله دقت۴ ، حساسیت۵ و ماتریس درهم ریختگی ۶ سنجیدیم. نتایج به دست آمده نشان می دهد که جهت تشخیص صدای گریه نوزادان الگوریتم شبکه عصبی حافظه طولانی- کوتاه مدت دارای دقت ۹۶/۳۰% و شبکه عصبی پیچشی دارای دقت ۹۷/۹۷% می باشد
کلیدواژه ها:
کد مقاله/لینک ثابت به این مقاله
کد یکتای اختصاصی (COI) این مقاله در پایگاه سیویلیکا FJCFIS09_036 میباشد و برای لینک دهی به این مقاله می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:https://civilica.com/doc/1436435/
نحوه استناد به مقاله:
در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:نورمحمدی، پری ناز و رحیمی هاشم آباد، مریم و زمانی تراشنده، مهسا و اکبرزاده توتونچی، محمدرضا،1400،تشخیص گریه نوزاد از سایر صداهای محیط با استفاده از یادگیری عمیق،نهمین کنگره مشترک سیستم های فازی و هوشمند ایران،بم،https://civilica.com/doc/1436435
در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1400، نورمحمدی، پری ناز؛ مریم رحیمی هاشم آباد و مهسا زمانی تراشنده و محمدرضا اکبرزاده توتونچی)
برای بار دوم به بعد: (1400، نورمحمدی؛ رحیمی هاشم آباد و زمانی تراشنده و اکبرزاده توتونچی)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.
مدیریت اطلاعات پژوهشی
اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.
علم سنجی و رتبه بندی مقاله
مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.
مقالات مرتبط جدید
- حل مسئله برنامه ریزی خطی کروی فازی
- گامی فراتر در پیشگویی پیوند: یک مرور سیستماتیک بر پیشگویی پیوند چندلایه
- بهبود ترافیک شهری در شبکه های بین خودرویی با استفاده از رویکرد پروتکل وضعیت-اتصال و شبکه های عصبی
- تابعی اکتشافی برای بهبود دقت پیش بینی برنامه های جهش یافته آشکار کننده خطا
- بررسی تاثیر بکارگیری توابع ز یان مختلف بر عملکرد مدل خوشه بندی فازی برای داده های فازی در حضور داده های پرت
مقالات فوق اخیرا در حوزه مرتبط با این مقاله به سیویلیکا افزوده شده اند.
طرح های پژوهشی مرتبط جدید
- ملاحظات به کارگیری تصمیم گیری خودکار و هوش مصنوعی در دولت و پارلمان
- درآمدی بر حکمرانی هوش مصنوعی خلاصه راهبردی از: Allan Dafoe, AI Governance: A research agenda , Oxford university, ۲۰۱۸
- هوش مصنوعی در جهان (۶) امارات متحده عربی
- تاملات عقلانی در هوش مصنوعی
- هوش مصنوعی در جهان (۵) (جمهوری هند)
طرح های پژوهشی فوق اخیرا در حوزه مرتبط با این مقاله به سیویلیکا افزوده شده اند.
به اشتراک گذاری این صفحه
اطلاعات بیشتر درباره COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.