WSAMLP: Water Strider Algorithm and Artificial Neural Network-based Activity Detection Method in Smart Homes
محل انتشار: مجله هوش مصنوعی و داده کاوی، دوره: 10، شماره: 1
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 287
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JADM-10-1_001
تاریخ نمایه سازی: 21 فروردین 1401
چکیده مقاله:
One of the crucial applications of IoT is developing smart cities via this technology. Smart cities are made up of smart components such as smart homes. In smart homes, a variety of sensors are used for making the environment smart, and the smart things, in such homes, can be used for detecting the activities of the people inside them. Detecting the activities of the smart homes’ users may include the detection of activities such as making food or watching TV. Detecting the activities of residents of smart homes can tremendously help the elderly or take care of the kids or, even, promote security issues. The information collected by the sensors could be used for detecting the kind of activities; however, the main challenge is the poor precision of most of the activity detection methods. In the proposed method, for reducing the clustering error of the data mining techniques, a hybrid learning approach is presented using Water Strider Algorithm. In the proposed method, Water Strider Algorithm can be used in the feature extraction phase and exclusively extract the main features for machine learning. The analysis of the proposed method shows that it has precision of ۹۷.۶۳ %, accuracy of ۹۷. ۱۲ %, and F۱ index of ۹۷.۴۵ %. It, in comparison with similar algorithms (such as Butterfly Optimization Algorithm, Harris Hawks Optimization Algorithm, and Black Widow Optimization Algorithm), has higher precision while detecting the users’ activities.
کلیدواژه ها:
نویسندگان
J. Barazande
Computer Engineering Department, Imam Reza International University, Mashhad, Iran.
N. Farzaneh
Computer Engineering Department, Imam Reza International University, Mashhad, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :