magnetic resonance brain images classification by Convolutional neural network method

سال انتشار: 1400
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 396

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ECMECONF10_004

تاریخ نمایه سازی: 27 دی 1400

چکیده مقاله:

In recent years, with the increase in life expectancy globally, the diagnosis of Alzheimer's disease (AD) has become very important. If mild cognitive impairment (MCI) develops, the patient's mental abilities are irreversibly impaired, leading to Alzheimer's disease and dementia. This disorder has received special attention from many researchers;Because by diagnosing it in the early stages, its progression can be stopped, and treatment can be taken. Common ways to diagnose the disease are biochemical tests and psychological tests. One of the proposed approaches for diagnosing Alzheimer's disease is the analysis of Magnetic resonance imaging (MRI) used to study changes in the structure of the human brain. In this paper, brain magnetic resonance images (MRI) are first pre-processed using the SPM toolbox, and then the brain's gray matter (GM) is segmented and given as input to the CNN algorithm. This article uses the ADNI dataset. The results of this test show that we were able to classify the three categories of normal control (NC), Alzheimer’s disease (AD), and mild cognitive impairment (MCI) With an accuracy of over ۹۹%.

نویسندگان

Shirin Sanati

Master of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, iran

Neda Nosrati

Master of Computer Engineering, Islamic Azad university of Mashhad, Mashhad, Iran