Semantic Segmentation of Aerial Images Using Fusion of Color and Texture Features

سال انتشار: 1393
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 265

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JCSE-1-3_005

تاریخ نمایه سازی: 12 دی 1400

چکیده مقاله:

This paper presents a semantic method for aerial image segmentation. Multi-class aerial images are often featured with large intra-class variations and inter-class similarities. Furthermore, shadows, reflections and changes in viewpoint, high and varying altitude and variability of natural scene pose serious problems for simultaneous segmentation. The main purpose of segmentation of aerial images is to make subsequent recognition phase straightforward. Present algorithm combines two challenging tasks of segmentation and classification in a manner that no extra recognition phase is needed. This algorithm is supposed to be part of a system which will be developed to automatically locate the appropriate site for Unmanned Aerial Vehicle (UAV) landing. With this perspective, we focused on segregating natural and man-made areas in aerial images. We compared different classifiers and explored the best set of features for this task in an experimental manner. In addition, a certainty based method has been used for integrating color and texture descriptors in a more efficient way. The experimental results over a dataset comprised of ۲۵ high-resolution images show the overall binary segmentation accuracy rate of ۹۱.۳۴%.

نویسندگان

Mahdie Rezaeian

Isfahan University of Technology

Rasoul Amirfattahi

Isfahan University of Technology

Saeid Sadri

Isfahan University of Technology