Publisher of Iranian Journals and Conference Proceedings

Please waite ..
ناشر تخصصی کنفرانسهای ایران
ورود |عضویت رایگان |راهنمای سایت |عضویت کتابخانه ها
عنوان
مقاله

Election Prediction Based on Sentiment Analysis Using Twitter Data

سال انتشار: 1401
کد COI مقاله: JR_IJE-35-2_013
زبان مقاله: انگلیسیمشاهده این مقاله: 76
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

خرید و دانلود فایل مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای 8 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله Election Prediction Based on Sentiment Analysis Using Twitter Data

Hamid Hassanpour - Prof. Hamid Hassanpour Shahrood University of Technology Faculty of Computer Engineering and IT ۰۹۱۱ ۱۱۲ ۸۳۸۰ h_hassanpour@yahoo.com h.hassanpour@shahroodut.ac.ir
Abulfazl Yavari - Shahrood University of Technology
Bagher Rahimpour - Mazandaran University of Science and Technology
Mehregan Mahdavi - Sydney International School of Technology and Commerce, Sydney, Australia

چکیده مقاله:

Election prediction has always been of interest to many people. In the last decade, the increasing influence of social networks and the possibility of sharing opinions and ideas have rendered election prediction based on social network data analysis. This paper, drawing on Twitter data and sentiment analysis, uses the proportion of positive messages rate to negative messages rate as an effective indicator for predicting elections. Then, using the aging estimation method, it predicts the values of this indicator in future time windows. The experiments conducted on the Twitter data related to the ۲۰۲۰ United States presidential election in a four-month time window indicate that the indicator values and eventually the election results can be predicted with high accuracy. The experiments conducted on the Twitter data related to the ۲۰۲۰ United States presidential election in a four-month time window indicate that the indicator values and eventually the election results can be predicted with high accuracy.

کلیدواژه ها:

کد مقاله/لینک ثابت به این مقاله

کد یکتای اختصاصی (COI) این مقاله در پایگاه سیویلیکا JR_IJE-35-2_013 میباشد و برای لینک دهی به این مقاله می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:

https://civilica.com/doc/1323511/

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Hassanpour, Hamid and Yavari, Abulfazl and Rahimpour, Bagher and Mahdavi, Mehregan,1401,Election Prediction Based on Sentiment Analysis Using Twitter Data,https://civilica.com/doc/1323511

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1401, Hassanpour, Hamid؛ Abulfazl Yavari and Bagher Rahimpour and Mehregan Mahdavi)
برای بار دوم به بعد: (1401, Hassanpour؛ Yavari and Rahimpour and Mahdavi)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مدیریت اطلاعات پژوهشی

صدور گواهی نمایه سازی | گزارش اشکال مقاله | من نویسنده این مقاله هستم

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز: دانشگاه دولتی
تعداد مقالات: 8,747
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.

پشتیبانی