A Multi-class Magnitude Classifying Sparse Source Model for Compressible Sources

سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 293

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_TJEE-51-2_003

تاریخ نمایه سازی: 1 آذر 1400

چکیده مقاله:

Source modelling is a gateway to the fascinating world of source coding. Many real-world sources are sparse or have a sparse representation. According to this fact, this work has focused on providing a new model to represent real-world non-strictly sparse (compressible) sources. To this aim, a novel model has been evolved from a simple sparse binary source to reflect the characteristics of compressible sources. The model is capable to represents real-world compressible sources by classifying samples into different classes based on their magnitudes. The model parameters are estimated using an innovative approach, a combination of a clustering technique and the binary genetic algorithm. The ability of the new approach has been assessed in modeling DCT coefficients of still images and video sequences. The proposed model also inspires an efficient coding approach to compress a wide range of sources including compressible sources. Comparison with classical well-known distributions including Laplace, Cauchy, and generalized Gaussian distribution and also with the most recent Noisy BG model reveals the capabilities of the proposed model in describing the characteristics of sparse sources. The numerical results based on the “chi-square goodness of fit” show that the proposed model provides a better fit to reflect the statistical characteristics of compressible sources.

نویسندگان

مسعود آرامیده

Electrical Engineering Department, Engineering Faculty, Shahid Chamran Universiy of Ahvaz, Ahvaz, Iran

احسان نامجو

Electrical Engineering Department, Engineering Faculty, Shahid Chamran Universiy of Ahvaz, Ahvaz, Iran

مهدی نوشیار

Electrical and Computer Engineering Department, Engineering Faculty, University of Mohaghegh Ardabili, Ardabil, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • H. M. Al-Kadhim and H. S. Al-Raweshidy, “Energy Efficient Data ...
  • A. Biason, C. Pielli, A. Zanella, and M. Zorzi, “Access ...
  • L.-M. Ang, K. P. Seng, A. M. Zungeru, and G. ...
  • ث. عمویی و ک. میرزایی, “«فشرده سازی تصویر توسط چندی ...
  • م. مگری and ه. گرایلو, “فشرده سازی سیگنالهای الکترومایوگرام مبتنی ...
  • ط. محمود and ج. سپیده, “فشرده سازی سیگنالهای ژنوم با ...
  • T. M. Cover and J. A. Thomas, “Elements of information ...
  • D. L. Donoho, M. Vetterli, R. A. DeVore, and I. ...
  • E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty ...
  • D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. theory, vol. ...
  • E. J. Candes and T. Tao, “Near-optimal signal recovery from ...
  • C. Weidmann and M. Vetterli, “Rate distortion behavior of sparse ...
  • F. Abramovich, T. Sapatinas, and B. W. Silverman, “Wavelet thresholding ...
  • H. Rosenthal and J. Binia, “On the epsilon entropy of ...
  • A. Elzanaty, A. Giorgetti, and M. Chiani, “Lossy compression of ...
  • A. Fraysse, B. Pesquet-Popescu, and J.-C. Pesquet, “On the uniform ...
  • W.-H. Chen and C. Smith, “Adaptive coding of monochrome and ...
  • E. Y. Lam and J. W. Goodman, “A mathematical analysis ...
  • N. Kamaci, Y. Altunbasak, and R. M. Mersereau, “Frame bit ...
  • S. G. Mallat, “A theory for multiresolution signal decomposition: the ...
  • P. Moulin and J. Liu, “Analysis of multiresolution image denoising ...
  • A. Antoniadis, D. Leporini, and J. Pesquet, “Wavelet thresholding for ...
  • M. Aramideh, E. Namjoo, and M. Nooshyar, “Non-strictly Sparse Source ...
  • L. Palzer and R. Timo, “Fixed-length compression for letter-based fidelity ...
  • L. Palzer and R. Timo, “A lower bound for the ...
  • M. Leinonen, M. Codreanu, M. Juntti, and G. Kramer, “Rate-distortion ...
  • A. Kipnis, G. Reeves, Y. C. Eldar, and A. J. ...
  • M. Kaaniche, A. Fraysse, B. Pesquet-Popescu, and J.-C. Pesquet, “Accurate ...
  • A. Cohen, N. Shlezinger, S. Salamatian, Y. C. Eldar, and ...
  • M. Kaaniche, A. Fraysse, B. Pesquet-Popescu, and J.-C. Pesquet, “A ...
  • S. B. Korada and R. L. Urbanke, “Polar codes are ...
  • M. J. Wainwright, E. Maneva, and E. Martinian, “Lossy source ...
  • A. Golmohammadi, D. G. M. Mitchell, J. Kliewer, and D. ...
  • C. Chen, L. Wang, and S. Liu, “The design of ...
  • A. No and T. Weissman, “Rateless lossy compression via the ...
  • S. Eghbalian-Arani and H. Behroozi, “On the performance of polar ...
  • F. Yang, K. Niu, K. Chen, Z. He, and B. ...
  • S. G. Mallat, “A theory for multiresolution signal decomposition: the ...
  • R. L. Haupt and S. Ellen Haupt, “Practical genetic algorithms,” ...
  • F. Müller, “Distribution shape of two-dimensional DCT coefficients of natural ...
  • “BIOID-FACEDATABASE.” ...
  • “Xiph.org Video Test Media.” ...
  • K. Krishnamoorthy, “Handbook of Statistical Distributions with Applications,” ۲۰۰۶ ...
  • نمایش کامل مراجع