Detecting Hate-speech in the Text using Natural Language Processing and Machine Learning
سال انتشار: 1400
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 389
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CONFSKU01_049
تاریخ نمایه سازی: 17 آبان 1400
چکیده مقاله:
Automatic hate-speech detection from big and almost growing content of social media is a challenge. In the recent years it has been proven that the use of Natural LanguageProcessing methods in combination with Machine Learning algorithms to detect hate-speech from other instances of offensive language outperforms other approaches. This paper empirically studies the application of AdaBoost meta-algorithm to boost performance of hate-speech detection problem in conjunction with Support Vector Machine and Decision Tree as weak learners. The execution of AdaBoost with Support Vector Machine as the classifier on a Twitter dataset achieved higher accuracy in comparison to Decision Tree as the classifier. Moreover, it is observed that the accuracy of the AdaBoost classification method is higher than the Logistic Regression algorithm, which has thehighest accuracy among all the classification algorithms for the hate-speech problem in the given Twitter dataset.
کلیدواژه ها:
نویسندگان
Ebrahim Khalil Abbasi
Farhangian University Tehran, Iran
Roya Amini
Freelance Researcher Kurdistan, Iran