NEURAL NETWORK MODELING OF STRUCTURAL RESPONSE UNDER PERSISTENT EXTERNAL EXCITATIONS

سال انتشار: 1374
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 125

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

SEE02_063

تاریخ نمایه سازی: 11 مهر 1400

چکیده مقاله:

In this study a neural network modeling scheme is proposed where a neuro-model is trained in an supervised manner using a finite element model of the structure under consideration. This off-line training procedure allows one, not only to come up with a near optimal architecture for the neural network, but also to initialize its parameters at a desirable state. As a representative example, a geometrically nonlinear plate structure is utilized in time domain simulations where the behavior of the neuro-model is explored with respect to novel persistent external excitations in a desired frequency range. It is shown that the neuro-model performs very well in predicting the response of the nonlinear plate structure. Furthermore, the trained neural network would be ready for additional on-line adaptation in an unsupervised scheme.

نویسندگان

khashayer nikzad

Assistant Professor, International Institute of Earthquake Engineering and Seismology, P.O.Box ۱۹۳۹۵/۳۹۱۳ Tehran, Iran.

jamshid ghaboussi

Professor, Department of Civil Engineering at University of Illinois at Urbana-Champaign,Urbana, IL ۶۱۸۰۱.