طراحی یک سیستم معاملاتی خودکار با استفاده از شبکه عصبی پیچشی
محل انتشار: مجله چشم انداز مدیریت مالی، دوره: 10، شماره: 31
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 399
فایل این مقاله در 32 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_FINANC-10-31_007
تاریخ نمایه سازی: 24 شهریور 1400
چکیده مقاله:
در سال های اخیر مقالات و پژوهش های زیادی در زمینه ی استفاده از روش های یادگیری ماشینی و معاملات الگوریتمی در بازارهای مالی به منظور کسب بازدهی منتشر شده است. هدف این پژوهش ایجاد یک سیستم معاملاتی خودکار با استفاده از پردازش تصویر به وسیله ی شبکه عصبی پیچشی است. بدین منظور، در ابتدا پس از دریافت داده های مورد نیاز برای سهام منتخب، ۲۸ اندیکاتور تحلیل تکنیکال انتخاب و مقادیر هر کدام به صورت جداگانه برای هر سهم محاسبه شد. سپس سری های زمانی این اندیکاتورها به تصاویر ۲ بعدی تبدیل شده و در نتیجه برای هر داده روی سری زمانی قیمت سهم، یک تصویر دو بعدی با ابعاد ۲۸×۲۸ ساخته شد. پس از برچسب گذاری هر تصویر با یکی از برچسب های خرید، فروش و نگهداری، این تصاویر به شبکه عصبی پیچشی وارد شدند. همچنین برای بررسی بازدهی و ریسک سیستم ارائه شده، یک روش برای خرید و فروش بر اساس نتایج مدل در زمان گذشته معرفی شده است. نتایج پژوهش نشان می دهد که در ۸۰% موارد، این روش بازدهی بیشتری نسبت به استراتژی مرسوم خرید و نگهداری کسب کرده است. همچنین همواره از نظر معیارهای ریسک انحراف معیار و بیشترین افت بهتر عمل می کند. همچنین، نتایج نشان دهنده ی تاثیر زیاد کارمزد معاملات بورس اوراق بهادار تهران بر روی بازدهی مدل است. به گونه ای که مدل چند برابر سود کسب شده را برای پرداخت کارمزد از دست میدهد.
کلیدواژه ها:
نویسندگان
امیرحسین یافتیان
دانشجوی کارشناسی ارشد مهندسی صنایع، دانشگاه تربیت مدرس، تهران، ایران.
محمدعلی رستگار
استادیار دانشکده مهندسی صنایع و سیستم ها، دانشگاه تربیت مدرس، تهران، ایران
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :