Automatic Facial Expression Recognition Method Using Deep Convolutional Neural Network

سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 312

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-9-2_002

تاریخ نمایه سازی: 20 مرداد 1400

چکیده مقاله:

Facial expressions are part of human language and are often used to convey emotions. Since humans are very different in their emotional representation through various media, the recognition of facial expression becomes a challenging problem in machine learning methods. Emotion and sentiment analysis also have become new trends in social media. Deep Convolutional Neural Network (DCNN) is one of the newest learning methods in recent years that model a human's brain. DCNN achieves better accuracy with big data such as images. In this paper an automatic facial expression recognition (FER) method using the deep convolutional neural network is proposed. In this work, a way is provided to overcome the overfitting problem in training the deep convolutional neural network for FER, and also an effective pre-processing phase is proposed that is improved the accuracy of facial expression recognition. Here the results for recognition of seven emotional states (neutral, happiness, sadness, surprise, anger, fear, disgust) have been presented by applying the proposed method on the two largely used public datasets (JAFFE and CK+). The results show that in the proposed method, the accuracy of the FER is better than traditional FER methods and is about ۹۸.۵۹% and ۹۶.۸۹% for JAFFE and CK+ datasets, respectively.

نویسندگان

Seyedeh H. Erfani

School of Engineering, Damghan University, Damghan, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • J. Lia, D. Zhanga, J. Zhanga, T. Lia, Y. Xiaa, ...
  • J. Przybyło, “Automatic recognition of facial expressions in the image ...
  • M. Rezaei, and V. Derhami, “Improving LNMF Performance of Facial ...
  • L. Chen, M. Zhou, W. Su, M. Wu, J. She, ...
  • Q. Mao, Q. Rao, and Y. Yu, “Hierarchical bayesian theme ...
  • L. A. Teixeira, E. De Aguiar, A. De Souza, and ...
  • L. Zhang, and D. Tjondronegoro, “Facial expression recognition using facial ...
  • C. J. Lin, W. L. Chu, C. C. Wang, G. ...
  • Y. Wang, X. Wang, and W. Liu, “Unsupervised local deep ...
  • V. Mayya, R. M. Pai, and M. M. Pai, “Automatic ...
  • B. K. Kim, J. Roh, S. Y. Dong and S. ...
  • X. Wang, R. Guo, and C. Kambhamettu, “Deeply-learned feature for ...
  • G. Levi, and T. Hassncer, “Age and gender classification using ...
  • [۱۶]M. K. A. E. Meguid, and M. D. Levine, “Fully ...
  • C. Turan, and K. M. Lam, “Region-based feature fusion for ...
  • P. Lucey, J. F. Chon, T. Kanade, J. Saragih, Z. ...
  • L. Nwosu, H. Wang, L. Jiang, I. Unwala, X. Yang, ...
  • P. Burkert, F. Trier, M. Z. Afzal, A. Dengel, and ...
  • [۲۱]P. Liu, S. Li, S. Shan, and X. Chen, “Facial ...
  • D. K. Jain, P. Shamsolmoalib, and P. Sehdev, “Extended Deep ...
  • H. C. Santiago, T. Ren, and G. D. C. Cavalcanti, ...
  • D. Hamester, P. Barros and S. Wermter, “Face Expression Recognition ...
  • Z. Qawaqneh, A. Abu Mallouh, and B. D. Barkana, “Deep ...
  • P. Viola, and M. Jones, “Rapid object detection using a ...
  • A. Krizhevsky, I. Sutskever and G. E. Hinton, “Imagenet classification ...
  • M. Lyons, S. Akamatsu, M. Kamachi, and J. Gyoba, “Coding ...
  • نمایش کامل مراجع