CoReHAR: A Hybrid Deep Network for Video Action Recognition
محل انتشار: فصلنامه بین المللی وب پژوهی، دوره: 3، شماره: 1
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 357
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJWR-3-1_001
تاریخ نمایه سازی: 26 اردیبهشت 1400
چکیده مقاله:
Automating the processing of videos in applications such as surveillance, sport commentary and activity detection, human-machine interaction, and health/disability care is crucial to their correct functioning. In such video processing tasks, recognition of various human actions is a pivotal component for the correct understanding of videos and making decisions upon it. Accurately recognizing human actions is a complex process, demanding high computing capabilities and intelligent algorithms. Several factors, such as object occlusion, camera movement, and background clutter, further challenge the task and its accuracy, essentially leaving deep learning approaches the only viable option for properly detecting human actions in videos. In this study, we propose CoReHAR, a novel Human Action Recognition method that employs both deep Convolutional and Recurrent neural networks on raw video frames. Using the pre-trained ResNet۱۵۲ CNN, deep features are initially extracted from video frames. The sequential information of the frames is then learned using DB-LSTM RNN. Multiple stacked layers in forward and backward passes of the DB-LSTM provide increased network depth for higher accuracy. A number of techniques are also applied to improve CoReHAR’s processing speed on heterogeneous GPU-enabled systems. The proposed method is evaluated using PyTorch, and is compared to the state-of-the-art methods, showing a considerable efficiency increase, with nearly ۹۵% recognition accuracy measured as an average over all splits of the challenging UCF۱۰۱ dataset.
کلیدواژه ها:
نویسندگان
Akram Mihanpour
Shahid Chamran University of Ahvaz
Mohammad Javad Rashti
Shahid Chamran University of Ahvaz
Seyed Enayatallah Alavi
Shahid Chamran University of Ahvaz