Hybrid Artificial Intelligence Model Development for Roller-compacted Concrete Compressive Strength Estimation
محل انتشار: ماهنامه بین المللی مهندسی، دوره: 33، شماره: 10
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 317
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-33-10_004
تاریخ نمایه سازی: 6 اردیبهشت 1400
چکیده مقاله:
This study implemented the artificial bee colony (ABC) metaheuristic algorithm to optimize the Artificial Neural Network (ANN) values for improving the accuracy of model and evaluate the developed model. Compressive strength of RCC was investigated using mix design materials in three forms, namely volumetric weight input (cement, water, coarse aggregate, fine aggregate, and binder), value ratio (water to cement ratio, water to binder ratio, and coarse aggregate to fine aggregate ratio), as well as the percentage of mix design values of different ages. A comprehensive, proper-range dataset containing ۳۳۳ mix designs was collected from various papers. The accuracy of the research models was investigated using error indices, namely correlation coefficient, root-mean-square-error (RMSE), mean absolute error (MAE), and developed hybrid models were compared. External validation and Monte Carlo simulation (MCS)-based uncertainty analysis was also used to validate the models and their results were reported. The experimental stage of the prediction of compressive strength values showed significant accuracy of the ANN-ABC model with (MAE=۱۱.۴۹, RMSE=۰.۹۲۰, RME=۵.۲۱) compared to other models in this study. Besides, the sensitivity analysis of predictor variables in this study revealed that the variables “specimen age,” “binder,” and “fine aggregate” were more effective and important in this research. Comparison of the results showed that the improved proposed model using the ABC algorithm was more capable and more accurate in reducing the error rate in providing computational relations compared to the default models examined in the prediction of the compressive strength of RCC and also tried in simplifying computational relations.
کلیدواژه ها:
Artificial Neural Network ، Artificial Bee Colony Algorithm ، Roller-Compacted Concrete ، Compressive strength
نویسندگان
A. Ranjbar
Department of Civil Engineering, Larestan Branch, Islamic Azad University, Larestan, Iran
N. Barahmand
Department of Civil Engineering, Larestan Branch, Islamic Azad University, Larestan, Iran
A. Ghanbari
Department of Civil Engineering, Larestan Branch, Islamic Azad University, Larestan, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :