A New Method for Missing Data Imputation in Banking Datasets Based on Biclustering
سال انتشار: 1398
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 417
فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
MMCM01_007
تاریخ نمایه سازی: 19 فروردین 1400
چکیده مقاله:
Online banking (Internet banking) has emerged as one of the mostprofitable e-commerce applications over the last decade and thusdata analysis and data mining techniques are extensively used toenhance decision making in financial institutions and banks. One ofthe main challenges in data mining for e-banking is the existence ofmissing values. A new method is proposed in this paper to imputemissing values based on the cross-relationship between informationstored in the banking databases. Given that all banking informationis not stored in a single table and there are useful data in othertables, it is demonstrated how missing values of city attribute incustomers table can be estimated using the information stored intransactions table. First a pivot table is generated based ontransactions table and then a biclustering algorithm is applied togroup customers. Finally, missing city values of the customers areimputed using existing ones. The experimental results show that theproposed method has better performance than classic imputationmethods and can be easily employed in other similar cases forimputing missing attributes in banking datasets.
کلیدواژه ها:
نویسندگان
Mohsen Yazdinejad
Artificial Intelligence Department, Faculty of Computer Engineering, University of Isfahan
Sareh Hormozan
Interdisciplinary Department, Faculty of New Sciences and Technologies, University of Tehran
Hossein Karshenas
Artificial Intelligence Department, Faculty of Computer Engineering, University of Isfahan