Card Fraud Detection Models Using Data Mining Techniques And Patterns

سال انتشار: 1398
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 507

فایل این مقاله در 19 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

MMCM01_002

تاریخ نمایه سازی: 19 فروردین 1400

چکیده مقاله:

Due to the fast development of e-commerce industry and electronic paymentecosystem, Anti-Fraud systems have a market value. Because of the dissimilarformat of the data (Fraud and Non-Fraud cases), the detection of fraudulenttransactions is difficult to achieve. This paper intends to survey on existing frauddetection models, analyses and compares various popular classifier algorithms thathave been most commonly using in detecting fraud behavior. It focuses on thebenchmark used to assess the classification performance and rank those algorithms.Mostly use Data Mining techniques for credit card fraud detection. The detectiontechniques is mostly based on the methods like Decision Tree, Clusteringtechniques, Neural Networks and Hidden Markov Model, these are evolved indetecting the various credit card fraudulent transactions. This paper presents thesurvey of those techniques and identifies the best fraud cases.

نویسندگان

Farshad Ganji

arel university Istanbul Turkiye

Rahime Gorban

Ershad parvin etesami İran Ardebil