Temporal Convolutional Learning: A New Sequence analysis model to Improve the Performance of Deep Neural Networks in Smart Phone Based Human Activity Recognition
محل انتشار: نهمین همایش بیوانفورماتیک ایران
سال انتشار: 1398
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 414
متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IBIS09_004
تاریخ نمایه سازی: 19 اسفند 1399
چکیده مقاله:
Smart phones have a great potential to be used as low-cost and non-invasive modality for automated recognition of human activities. Similarity of the signals which are captured from different activities may hamper the performance of such systems [1]. Although deep neural networks are effective tools to overcome the above challenge, they do not produce satisfactory results regardless of the temporal dependence of activity signals [2]. The aim of this article is utilizing temporal Convolutional Network (i.e. TCN) as a tool for incorporating temporal nature of activity signals into training process of deep networks. The casual relationship between TCN layers causes that no missing of historical information occurs in this network, therefore it may promote performance of basic deep schemes in recognizing human activities.
نویسندگان
Fatemeh Esmaeily
Department of Computer Engineering and Data mining laboratory, Alzahra University, Tehran, Iran
Mohammad Reza Keyvanpour
Department of Computer Engineering, Alzahra University, Tehran, Iran
Seyed Vahab Shojaedini
Iranian Research Organization for Science and Technology, Tehran, Iran