Rainfall Forecasting in Space and Time via ANNs

سال انتشار: 1382
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,696

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICCE06_436_8877049249

تاریخ نمایه سازی: 25 مهر 1384

چکیده مقاله:

Simulation of rainfall field plays important roles in water resources studies.River training works and design of flood warning systems are usually confronted by the fact that historical rainfall data are insufficient and sparse in spatial domain for analysis and decision-making purposes. Both internal and external characteristics of rainfall field depend on many factors including: pressure, temperature, wind speed and its direction.Recent advanced in artificial intelligence and in particular those techniques aimed at converting input to output for highly nonlinear, non-convex and dimensionalized processes such as rainfall field, provide an alternative approach for development of rainfall forecasting model. Artificial Neural Networks (ANNs), which perform a nonlinear mapping between inputs and outputs, are such a technique.Current literatures on ANNs show that selection of network architecture and its efficient training are major obstacle for their daily usage. In this paper, both feed-forward and recurrent type networks will be developed to simulate the rainfall field and an algorithm so called Radial Basis Function (RBF) coupled with Genetic Algorithm (GA) will be used to train the networks. The technique will be implemented to forecast rainfall for a number of lead-time using rainfall hyetograph of recording rain-gauges in Fars province. Cross-validation will be used to evaluate the prediction performance of the developed technique. Implication of such approach in real-time rainfall forecasting will be highlighted.

نویسندگان

M. Nasseri

Department of Civil Engineering, Isfahan University of Technology, Isfahan, Iran

K. Asghari

Department of Civil Engineering, Isfahan University of Technology, Isfahan, Iran

M. J. Abedini

Department of Civil Engineering, Shiraz University, Shiraz, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Luk, K. G., Ball, J. E. and Sharma, A., ،A ...
  • French, M. N., Krajewski, W. F. and Cuykendall, R. R., ...
  • Govindaraju, R. S., ،Artificial Neural Networks in Hydrology. Part2: Hydrologic ...
  • Haykin, S., ،، Neural networks: A COmp rehensive foundation', Prentice-Hall, ...
  • Imrie, C. E., Durucan, S. and Korre, A., ،River flow ...
  • Holland, J., "Adaptation in natural and artificial systems , University ...
  • Goldberg, D. E., 4Genetic algorithms in search, optimization and machine ...
  • Michalewich, Z., «Genetic Algoritlms + Data Structures _ Evolution Programs ...
  • Montana, D. J. and Daivis, L., *Training feedforward Neural Networks ...
  • Maniezzo, V., 44Genetic evalution of the topology and weight distribution ...
  • Sudheer, K. P., Gosain, A. K. and Ramasatri, K. S., ...
  • نمایش کامل مراجع