PREDICTION OF THE EARTHQUAKE MOMENT MAGNITUDE BY USE OF THE MULTILAYER PERCEPTRON NEURAL NETWORK
سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 352
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
SEE07_359
تاریخ نمایه سازی: 29 آذر 1399
چکیده مقاله:
Because of the major disadvantages of previous methods for calculating the magnitude of the earthquakes, the neural network as a new method is examined. In this paper a kind of neural network named Multilayer Perceptron (MLP) is used to predict moment magnitude of earthquakes. MLP neural network consist of three main layers; input layer, hidden layer and output layer. Since the best network configurations such as the best number of hidden nodes and the most appropriate training method cannot be determined in advance, and also, overtraining is possible, 32 models of network are evaluated to determine the best prediction model. By comparing the results of the current method with the real data, it can be concluded that MLP neural network has high ability in predicting the moment magnitude of earthquakes and it’s a very good choice for this purpose.
کلیدواژه ها:
نویسندگان
Jamal MAHMOUDI
MSc. Student, K.N.Toosi University of Technology, Tehran, Iran
Masoud REZAEI
MSc. Student, Building and Housing Research Center, Tehran, Iran
Mohammad Hossein MOHAMMADI
MSc. Student, Kharazmi University, Tehran, Iran