Traffic management via traffic parameters prediction by using machine learning algorithms
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 459
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJHCUM-6-1_005
تاریخ نمایه سازی: 23 آذر 1399
چکیده مقاله:
BACKGROUND AND OBJECTIVES: One of the short-term strategies to manage the traffic and make a balance between travel supply and demand for the near future is the short-term prediction of traffic parameters and informing the passengers. Therefore passengers are more likely to avoid traveling during traffic peak hours. In this study, hourly average traffic speed and hourly traffic volume as two traffic parameters that indicate traffic state are predicted for Karaj-Chaloos road in Iran. METHODS: Since traffic data have large volume, machine learning-based models have more suitable performance than traditional models. However, it is not merely possible to discover the cause and effect relationships and the importance of features. In this study, after using the artificial neural network and K-nearest neighbor models to predict traffic parameters, to analyze the sensitivity of the results, the importance of used features is investigated. Also, the effect of passing the time over the accuracy of predictions has been examined. FINDINGS: According to the results, the highest accuracy of predicting hourly traffic volume and hourly average traffic speed is achieved by the K-nearest neighbor that is equal to 61% and 91%, respectively. CONCLUSION: Compared to the historical average as a benchmark model, a significant improvement in the accuracy of predictions has been obtained by the artificial neural network and K-nearest neighbor models.
کلیدواژه ها:
نویسندگان
A. Rasaizadi
Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran
A. Ardestani
Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran
S.E. Seyedabrishami
Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :