Arc Length method, an application of artificial intelligence in infrastructure crack monitoring

سال انتشار: 1399
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 515

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICDU01_143

تاریخ نمایه سازی: 15 مهر 1399

چکیده مقاله:

Although manual crack inspection has been widely used for structural health monitoring over the last decades, the development of computer vision methods allows continuous monitoring and compensates the human judgment inaccuracy. In this study, an image-based method entitled, Arc Length method is introduced for extracting crack pattern characteristics, including crack width, and crack length. The method contains two major steps; in the first step, the crack zones are estimated in the whole image. Afterwards, the algorithm finds the start point, follows the crack pattern, and measures the crack features, such as crack width, crack length, and crack pattern angle. The application of this approach plays a significant role in the maintenance and crack monitoring of infrastructures, such as concrete bridges and tunnels.

نویسندگان

Amir Hossein Asjodi

M.Sc. Structural engineering, Sharif University

Kiarash M.Dolatshahi

Associate professor, Sharif University

Mohammad Javad Daeizadeh

M.Sc. Structural engineering, Sharif University