Predicting Shear Capacity of Panel Zone Using Neural Network and Genetic Algorithm
محل انتشار: ماهنامه بین المللی مهندسی، دوره: 33، شماره: 8
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 487
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-33-8_009
تاریخ نمایه سازی: 4 شهریور 1399
چکیده مقاله:
Investigating the behavior of the box-shaped column panel zone has been one of the major concerns of scientists in the field. In the American Institute of Steel Construction the shear capacity of I-shaped cross- sections with low column thickness is calculated. This paper determines the shear capacity of panel zone in steel columns with box-shaped cross-sections by using artificial neural network (ANN) and genetic algorithm (GA). It also compares ABAQUS finite element software outputs and AISC relations. Therefore, neural networks were trained using parametric information obtained from 510 connection models in ABAQUS software. The results show that the predicted shear capacity of the NN and the GA in comparison with the AISC relations use a wide range of all effective parameters in the calculation of the shear capacity of panel zone. Therefore, the use of artificial intelligence can be a good choice. Finally, the GA, along with optimization of a mathematical relation, has been able to minimize the error in determining the shear capacity of panel zones of steel-based columns, even at high column thicknesses.
کلیدواژه ها:
Box-Shaped Cross-Sections ، Genetic Algorithm ، Neural Network ، Shear Capacity of Panel Zone ، Steel Moment-Resisting Frame
نویسندگان
M. Vajdian
Department of Civil Engineering, Arak Branch, Islamic Azad University, Arak, Iran
S. M. Zahrai
Center of Excellence for Engineering and Management of Civil Infrastructures, School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran
S. M. Mirhosseini
Department of Civil Engineering, Arak Branch, Islamic Azad University, Arak, Iran
E. Zeighami
Department of Civil Engineering, Arak Branch, Islamic Azad University, Arak, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :